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EXECUTIVESUMMARY

This is the second stock assessment for oceanic whitetip shark in the WCPO following that
of Rice and Harley (2012), and the first since CMM2011-04 became active in 2013, enacting a
no-retention measure for this species for WCPFC Members, Cooperating Non-Members and
Participating Territories (CCMs). This assessment for oceanic whitetip shark was performed
in the Stock Synthesis modelling framework (Methot Jr & Wetzel 2013), an integrated age-
structured population model previously used to assess the status of sharks in the Pacific
Ocean and elsewhere. The population dynamics model was informed by three sources of data:
historical catches, time series of catch-per-unit-effort and length frequencies. We maintained
the four-fleet structure used in the previous stock assessment, spliĴing the longline fishery into
bycatch and target fleets, and the purse-seine fishery into fleets of associated and unassociated
sets.

A new development in this assessment was the inclusion of discard mortality (DM) scenarios
in the historical catches. This was a key step to account for the potential impacts of the no-
retention measure for oceanic whitetip sharks. Three scenarios were used assuming 25%,
43.75% and 100% mortality on the discards, accounting for mortality at different stages of
the discarding process from the catch event and crew handling to post-release mortality. In
addition, results from two new WCPO growth studies predicted a much less productive
profile for the stock than what had been assumed previously. Because growth was a key
uncertainty in this assessment, we use two growth and fecundity assessment ‘profiles’ to reflect
the differences between growth studies, and ensure that conclusions about stock status were
robust to the uncertainty about life-history parameters.

We developed a diagnostic case for the assessment based on the model with the best overall
diagnostics, an informative likelihood profile, and the most reasonable assumptions about
biology and fleet seĴings based on current knowledge about oceanic whitetip shark and the
fisheries that catch this species. Based on the results from the one-off sensitivies from the
diagnostic case and previous discussions at the Pre-Assessment workshop (Pilling & Brouwer
2019), a set of uncertainty axes for the model was defined outlining alternative values for key
uncertainties and influential model or biological parameters. The combination of all levels
across axes forms the structural uncertainty grid with a total of 648 individual model runs.

Stock status was obtained by summarizing reference points over all grid runs to account
for the assumptions about life-history parameters and impact of fishing underpinning the
assessment. We estimate the stock to be overfished and undergoing overfishing based on
SB/SBMSY andF/FMSY reference points and assuming equalweightings for grid levels. This
overall conclusion is the same as that from the previous assessment, despite a wider range of
uncertainties being considered, notably in the growth and fecundity parameters. In terms of
the depletion of the spawning biomass, most model runs predict SB/SB0 to be below 0.05,
and all model runs predict SB/SB0 to be below 0.1. Given the high levels of depletion, we
focus on SB/SB0 as a biomass-based reference point throughout.
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We found that F -based reference points improved in the period since CMM2011-04 became
active, which covers the last 4 years of the assessment’s time-span (2013–2016). Notably,
F/FMSY is predicted to have declined by more than half from 6.12 to 2.67 (median) for the last
year of the assessment when the impact of CMM2011-04 on survival is accounted for under
the 25% and 43.75% discard mortality scenarios. F levels relative to two alternative reference
points, F/Flim,AS and F/Fcrash,AS, follow similar trends following the adoption of the measure.

All catch scenarios accounting for DM < 100% showed a very slight increase in spawning
biomass since 2013, but final levels of depletion (SB/SB0) remain very low over all grid runs
(median: 0.0367, 95%CI: 0.021–0.061). Given the assessment assumes oceanic whitetip sharks
to becomemature aĞer 4 or 8 years, stock recovery should be expected to be slow in the period
following the conservationmeasure while the spawning biomass rebuilds. Despite the relative
improvements in F-based reference points since 2013, the median value of F/Fcrash over all
648 grid runs for 2016 remains above 1 (median: 1.41, 95%CI: 0.98–2.15), indicating that the
population should go extinct on the long-term under current levels of fishing mortality.

Recommendations

This assessment estimates that CMM2011-04 may have had a positive impact on stock status
by decreasing fishing mortality. However, there are two key sources of data informing stock
assessments that are compromised by observer practices not having adapted to the post-CMM-
2011-04 period:

• Longline observer programs need to ensure there are clear and consistent directives
about how unobserved discarded-cut-free (DCF) individuals are to be recorded. Not
recording DCF events can seriously compromise the quality of the catch rates time
series used both as an index of abundance and to reconstruct historical catches for shark
assessments. We recommend that all DCF events are recorded even if unobserved,
and that in the instance where the species could not be identified, that the species be
recorded at the highest taxonomical level possible, even if in the absence of information
that level is ‘shark’ or ‘unidentified’.

• We recommend that approximate length measurements should be recorded even if
individuals are not brought on-deck, with an estimate of precision. This would ensure
that the time series of length measurements is not compromised even if the precision of
length estimates is lower.

• We recommend that alternative analytical methods incorporating coarser bin lengths
for part of the time series be investigated.

Wemake the following recommendations about additional research into the biology of oceanic
whitetip shark and of data inputs that impact its assessment:

• Given predictions of recent and latest stock status were sensitive to assumptions made
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about discard and post-release mortality,we recommend that ongoing and new studies
on this topic for this species be prioritized and projections of current stock status
be updated with estimates of PRM specific to oceanic whitetip shark in the WCPO.
We recommend that observers record the length of the trailing branchline when
individuals are cut-free, in order to improve modelled estimates of PRM rates.

• We recommend that spatial trends in shark length for the longline dataset be analysed
in a dedicated study in order to determine the likely cause for a north-south positive
gradient in the mean length observed, and that approaches to standardize the length
dataset be investigated accordingly.

• We recommend that additional length-length conversions be obtained, and, more
specifically, a length-length conversion from total length (TL) to fork length
measurements starting from the lower jaw (LFL).

• We recommend that a direct collaboration with countries having participated in the
shark target fleet be undertaken to either produce an historical time series of targeted
catch, or reliable anchor points that can be used to scale catches reconstructed from
observer longline datasets.

• While CMM-2011-04 allows for scientific sampling, traditional destructive sampling
might not be optimal given the current state of the population. We recommend that SC
investigates non-lethal approaches to collect growth and maturity samples for sharks
and oceanic whitetip shark in particular.

• We invite SC to note the alternative reference pointsF/Flim,AS andF/Fcrash,AS included
in this assessment.
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1. INTRODUCTION

1.1 Background

This paper presents the stock assessment for oceanic whitetip shark (Carcharhinus longimanus)
for the Western and Central Pacific Ocean (WCPO) covering the period from 1995 to 2016.
Oceanic whitetip shark is a large species, found in tropical and warm-temperate waters across
all oceans, with a marked preference for oceanic waters distant from the continental shelf
(Bonfil et al. 2008). The species was previously considered one of the most common sharks
in offshore tropical waters, and it was reportedly frequently caught in tuna-target fisheries,
but its population size is considered to have declined in recent decades.

Worldwide, there has only been a single stock assessment for this species to date, which was
focused on the Western and Central Pacific Ocean region and included the period between
1995 and 2009 (Rice & Harley 2012). This assessment started in 1995 as there was liĴle
collection of catch statistics for sharks in the WCPO before that year. Rice and Harley (2012)
concluded that the stock was overfished: spawning biomass had declined by 86% from
1995 levels, and current fishing mortality was 6.5 times the mortality estimate predicted to
achieve maximum sustainable yield (MSY). In addition, a recent review surveyed additional
abundance metrics of this species across all main oceans, and concluded that oceanic whitetip
shark had experienced considerable historical declines throughout its range (Young et al. 2018).

In an effort to slow the rate of population decline of this species, the Western and Central
Pacific Fisheries Commission (WCPFC) introduced a Conservation andManagement Measure
(CMM2011-04) that included a non-retention policy for oceanic whitetip shark across the
WCPFC Convention Area. Under this measure, vessels belonging to all member countries are
prohibited from retaining or landing oceanic whitetip shark. Implementation of CMM2011-04
should reduce fishing mortality of oceanic whitetip sharks if individuals caught by longliners
or purse seiners are released back to the water alive; however, rates of discard and post-release
mortality (PRM) are still poorly known. UnderWCPFCCircular 2016/51, a research projectwas
designed to assess longline post-release mortality of sharks once hooked, but oceanic whitetip
sharks were not included in the study (although research for this species is on-going, Common
Oceans (ABNJ) Tuna Project 2019). Furthermore, while CMM2011-04 officially came into effect
in 2013, a recent review documented that it was unevenly applied across WCPFC Members,
Cooperating Non-Members and Participating Territories (CCMs), and some oceanic whitetip
shark individuals were still observed as being retained (Rice 2018).

The current assessment provides an update of the previous stock assessment by Rice and
Harley (2012), including seven years of additional data and a revised assessment model within
the same modelling framework (Stock Synthesis, Methot Jr & Wetzel 2013). In addition,
the current assessment model includes new methodology to predict historical catches and
updates key biological parameters of this species. In parallel to the current study, a separate
risk assessment was undertaken as part of Western and Central Pacific Fisheries Commission
Project 92 (Neubauer et al. 2019). The risk assessment evaluated different methods for data-
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poor situations as alternative assessment methods for this species.

1.2 Distribution andbiology

Oceanic whitetip sharks are primarily found in shallow depths at latitudes between 10◦S and
10◦N, although their habitat can extend to 30◦S and 30◦N. The distribution of this species is
primarily tropical, but they can occasionally be found in waters at relatively low temperatures
of 15◦C (Bonfil et al. 2008).

Observer data from longline fisheries in the Western and Central Pacific Ocean (analysed in
the current assessment) included temperature records, and the lowest sea surface temperature
(SST) associated with the capture of an oceanic whitetip shark individual was 16.4◦C; the
highest latitude was 43◦N, but less than 1% of individuals were observed outside of the 30◦S
to 30◦N band.

In spite of the species’ preference for warm waters, a recent study found that individuals
tended to avoid high sea surface temperatures (i.e., above 28.5◦C), and engaged in
thermoregulatory behaviour via swim cycles to cooler depths in the water column
(Andrzejaczek et al. 2018). In addition, recent tracking studies with pop-up satellite archival
tags documented that individuals of this species are able to dive below 1000 metres depth, but
that they spent most of their time in shallowwaters (typically less than 200m depth) (Filmalter
et al. 2012, Howey-Jordan et al. 2013, ToloĴi et al. 2015). These temperature and depth
preferences affect the overall and seasonal exposure of oceanic whitetip shark to fisheries, and
their vulnerability to specific fishing strategies (e.g., shallow longline sets).

There is limited information about the population structure of oceanic whitetip sharks in the
Western and Central Pacific Ocean. The most recent population study identified Atlantic
Ocean and Indo-Pacific Ocean stocks but nowithin-ocean differentiation, indicating that large-
scale movements are common for individuals or that the genetic markers used were sensitive
to small amounts of gene flow (Ruck 2016). There is currently no evidence that there is more
than one populationwithin theWestern and Central Pacific Ocean; however, the limited extent
of horizontal movement inferred from satellite tagged individuals highlights a potential for
regional residency in the Pacific Ocean (Musyl et al. 2011) and other ocean basins (Howey-
Jordan et al. 2013, ToloĴi et al. 2015).

The oceanic whitetip shark is typically considered a slow-growing species, although there
has been some contention about this classification (Clarke et al. 2015). Three relatively recent
studies (within the last 20 years) documented different growth rates of oceanic whitetip shark
across different areas of the Pacific Ocean (Figure 1). The slowest growth rate was based on
103 individuals from the Bismarck Sea around PapuaNewGuinea (D’Alberto et al. 2017), with
a slightly higher rate documented from 188 individuals sampled from the Taiwanese fishing
fleet in the Western North Pacific Ocean between latitudes 23◦and 28◦N (Joung et al. 2016).
The highest growth rate was based on 225 individuals sampled from Japanese longline vessels
fishing in the North Pacific Ocean to 30◦N (Seki et al. 1998), and growth data from this study
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were the basis of the previous stock assessment of this species. None of the studies detected
significant differences in growth rates between males and females.

Differences across the studies also included estimates of fecundity and maturity (Table 1);
estimates reported here are from the study with the largest sample size (Seki et al. 1998). The
oceanic whitetip shark is viviparous, and liĴer sizes vary with an average of six pups (ranging
from one to 14 pups), which is comparable to other species for this type of shark (Clarke et al.
2015). Pups measure between 55 and 77 cm total length (TL) at birth. Males of this species
reach sexual maturity at 167 to 195 cm TL, compared with 175 to 189 cm TL for females; the
mid-point of these estimates correspondswith an age of 4.5 years (based on the Seki et al. (1998)
growth curve). There is some uncertainty about the longevity of this species, and the oldest
individual recorded was 17 years old (D’Alberto et al. 2017). Model-based extrapolation based
on growth curves from Seki et al. (1998) led to an implausibly high value of 36 years, and the
Western and Central Pacific Fisheries Commission expert panel on shark life-history agreed
that 17 years was a more realistic value (Clarke et al. 2015).

In general, the parameters from the study by Seki et al. (1998) predicted faster growth andmore
productive fecundity parameters (i.e., younger age-at-maturity) than estimates from the other
two studies by Joung et al. (2016) and D’Alberto et al. (2017). It is possible that the differences
across studies reflect regional paĴerns in growth, but the studies also differed in time, covering
different periods of exploitation of this species (early 1990s for Seki et al. (1998), 2002 to 2006
for Joung et al. (2016), and 2014 for D’Alberto et al. (2017)).

1.3 Fisheries

Longline and purse-seine fisheries in the WCPO catch oceanic whitetip shark, primarily as
bycatch; however, there was a longline fishery targeting shark in the Bismarck Sea from the
1990s to the mid-2010s (White et al. 2018). Annual and spatial trends in the distribution of
effort for these fleets is shown in Figure 2.

Longline fisheries in the Western and Central Pacific Ocean primarily target albacore, bigeye,
yellowfin and bluefin tuna, or swordfish. These fisheries are active at all latitudes and longline
effort has increased two-fold since 1995. Oceanic whitetip shark are caught as bycatch by
longline sets inwarmerwaters, especially shallow sets due to the species’ preference for surface
waters. The size of individuals caught ranges between 75 and 240 cm (mean ∼ 160 cm, total
length). There have also been larger individuals in the catch, although it is likely that large-
sized individuals are able to bite-off the hook without geĴing caught if the lead line is made
of monofilament, the material typically used for longline sets in the Pacific Ocean (Burgess
et al. 2005). Conversely, the lack of small-sized oceanic whitetip shark in longline catches has
led to the suggestion that newly-born individuals have liĴle overlap with the offshore fishing
grounds of longliners (Joung et al. 2016).

Most of the oceanic whitetip sharks caught in the Western and Central Pacific Ocean are
bycatch in the longline fleets, so the adoption of CMM2011-04 should have reduced the impact
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of this fishery on the population. In addition, CMM2014-05 banned the simultaneous use of
shark lines and wire traces from July 2015 onwards. While this should lower the number
of sharks that get caught in the first instance, a simulation study found that much higher
reductions in fishing mortality would be achieved by banning both practices (Harley et al.
2015).

There is evidence of a longline fishery targeting sharks in the Bismarck Sea area (Papua New
Guinea) during the 1990s and part of the 2000s which used gear modifications to increase the
catch rates of sharks (Kumoru 2003). These modifications included shallow sets (e.g. hooks
between floats (HBF) = 4) and wire traces. Although this fishery is no longer active due to the
retention ban on silky sharks (the main catch), an artisanal coastal shark fishery has remained
active to some extent. Nevertheless, a recent examination ofDNAof shark fins from this fishery
found no evidence of oceanic whitetip shark in the catch (Appleyard et al. 2018), but this might
be related to the coastal extent of the fishing grounds surveyed. Statistics of oceanic whitetip
catch for the earlier target shark fishery are uncertain, as observer coverage was sparse and
logsheet records of effort targeting shark are incomplete. In addition, logbook-reporting of
key shark catches, including oceanic whitetip shark, only became mandatory in 2012 with the
enaction of CMM2010-07.

Purse seine fleets are mostly active in waters between 10◦N and 10◦S. These fleets target
skipjack tuna and encounter oceanic whitetip shark as bycatch, but at a markedly lower rate
than longliners. Effort can be classified as associated (e.g., using fishing aggregating devices,
FADs, or floating objects) or unassociated (e.g., free schools). There is some evidence from
observer coverage of these fleets that catch rates of oceanicwhitetip shark are higher on driĞing
FADs and lower on free school sets (Tremblay-Boyer & Neubauer 2019).

2. METHODS

2.1 Overview

This assessment was performed in the Stock Synthesis modelling framework (Methot Jr &
Wetzel 2013), an integrated age-structured populationmodel. The population dynamicsmodel
was informed by three sources of data: historical catches, time series of catch-per-unit-effort
and length frequencies. Included below are descriptions of the processing of the input datasets
used to inform the assessment, the population dynamics model and the grid approach to
characterise uncertainty (details of the methodology for the data inputs are available in the
companion report by Tremblay-Boyer & Neubauer 2019). The boundaries for the assessment
region are shown in Figure 3.
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2.2 Inputs to the stock assessment

2.2.1 Description of datasets

Datasets from the database of the Pacific Community (SPC) included catch, effort and observer
data.

• L_BEST: SPC’s best estimates of longline catch and effort (in hooks) for fleets in the
WCPFCConvention Area (WCPFC-CA), available at the 5◦×month× year× flag× fleet
resolution for key species of tuna and billfish, and sharks in some years. A version of this
database (L_BEST.HBF) was available with an additional strata for hooks-between-floats
(HBF), but effort coverage is uneven over fleets and years (see Figure 2 for the distribution
of total effort for this fleet over time and space in the assessment region).

• S_BEST: SPC’s best estimates of purse-seine catch and effort (sets and days) for fleets in
theWCPFC-CA, available at the 1◦× set type×month× year× flag× fleet resolution for
key species of tuna and billfish, and sharks in some years (see Figure 2 for the distribution
of total effort for this fleet over time and space in the assessment region).

• Observer programmes for longline and purse-seine fleets: The full observer dataset
for longline and purse-seine fleets available to SPC was used for the analysis, including
data from the SPC’s Regional Observer Programme and national observer programmes.
Records collected by longline observers that are relevant to this assessment are key gear
and aĴributes (including date and time, location, HBF) and, for each observed hook with
a positive catch event, the species, the fate of the catch (e.g., discarded or retained), the
condition, the length and the sex of the individual. The quality and coverage for most
variables changes over time and between programmes. For observed purse-seine sets,
observers estimate the number of sharks caught of a given species from the brail net and,
when possible, measure their length.

Data preparation

Extracts from SPC’s databases were obtained in April 2019. All datasets were filtered to retain
records within the Western and Central Pacific Ocean area only (Figure 3), over the period
of the stock assessment from 1995 to 2016. For the longline observer datasets, number of
hooks observed, when missing, was estimated from the product of hooks-between-floats and
the number of baskets observed. Sets were classified as shallow when the number of HBFs
was lower or equal to 10, following Peatman et al. (2018). Oceanography covariates (sea
surface temperature, chlorophyll-a, bathymetry and distance from the coast) were extracted
at the lowest resolution possible and aggregated to match the resolution of each dataset.
Longline sets occurring in sea surface temperatues below 16◦C were removed as they were
considered to be outside of oceanic whitetip shark habitat. When relevant, extreme values
of oceanography covariates were bounded or filtered out (> 99.5th quantile). Records from
implausible locations (e.g., on land) were omiĴed. Longline records without HBF information
and purse-seine records without set-association information were also omiĴed.
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2.2.2 Catch reconstruction

Historical catches for sharks in the Western and Central Pacific Ocean were poorly recorded
until 2010, when CMM2010-07 became active (replacing CMM2009-04), mandating the
reporting of catches of key shark species, including oceanic whitetip shark. Nevertheless,
reported shark catch was likely underestimated even aĞer CMM2010-07 came into effect. As
logbook-reported catches of oceanic whitetip shark were considered unreliable for the present
assessment period, we applied two strategies to reconstruct catches. In the first instance, we
created a prediction-model from observer catch rates to apply this model to known longline
and purse-seine effort across the Western and Central Pacific Ocean. In the second instance,
we applied the trade-based approach from Clarke (2018) to predict global catches of oceanic
whitetip shark based on fin trade statistics. The laĴer were apportioned to the Western and
Central Pacific Ocean using a set of alternative scaling methods. All catch predictions were
made in number of individuals.

Prediction of catch rates from observed sets

Previous approaches to reconstruct catches for this species have also been based on observer
catch data (see Lawson 2011, Rice 2012a, Peatman et al. 2018). The basis for these methods is
similar: amodel of catch-per-unit-effort is built based on observed sets and relevant covariates,
and the model is then used to predict catches based on a reliable measure of total effort by fleet
across the assessment region. The previous approaches differ in the modelling framework
used to build the catch rate model, the covariates considered and the treatment of uncertainty.
Lawson (2011) and Rice (2012a) both used Generalised Linear Models (GLMs), assuming
delta-log-normal error distributions (i.e., two-stage or hurdle model), but Rice (2012a) filtered
the data more extensively (e.g., only sets at SST ≥25◦C were retained) and permiĴed extra
variability around the year effects. Uncertainty around model predictions of catches was not
explicitly considered. Peatman et al. (2018) used Generalised Estimating Equations (GEEs) to
model catch rates, also with a delta-log-normal model structure. The GEE framework allows
for the correlation between observed sets in the same observer trips to be accounted for. Catch
predictions and uncertainty were estimated with a Monte Carlo simulation approach drawing
samples from modelled catch distributions.

Here, we usedMarkov chainMonte Carlo (MCMC)methods tomodel catch rates in number of
individuals for the observer longline and purse-seine datasets, assuming a negative binomial
error distribution. Negative binomial error distributions are well suited at representing catch
rates, as they can naturally account for high proportions of zero in the response variable
without the requirement of a parallel model (such as required when assuming delta-log-
normal error distribution). Negative binomial error distributions can also predict infrequent
but high catch events. An advantage of the MCMC approach to fiĴing GLMs is that the
uncertainty for any estimated parameter or derived quantity can be easily estimated by
drawing from the posterior samples of the convergedMCMC chains. Because of this, the scale
of alternative catch scenarios can be informed by model-derived uncertainty instead of user-
defined multipliers.
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We used the R package “brms“ (Bürkner 2017) to implement our approach. This package
provides an efficient interface for fiĴing GLMs in the Stan language for Bayesian statistics
(Carpenter et al. 2015). In addition, the brms package allows the user to customise probability
distributions to improve their suitability for representing some features of the response
variables and, therefore, improve the quality of the fit. Although the GLMs were fiĴed within
a Bayesian framework, we did not use informative priors for any of the models. Finally, all
models included a random effect for the vessel flag (Table 2), allowing the prediction of a
distribution for flag effects, which can then be used to predict catches for countries without
any observer coverage.

There was a high degree of overdispersion in the response variable, with most fishing sets
reporting no captures (≥ 90% and ≥ 99% zero sets in the longline and purse-seine datasets,
respectively). The impact of varying effort by fishing record on the probability of a positive
capture event was accounted for by parameterising the negative binomial distribution by the
number of “trials”, defined by the number of fishing hooks or sets used in the fishing set group.
In addition, a new parameter ν was added to the parameterisation of the negative binomial
distribution to allow more flexibility in how the overdispersion behaves as mean catch rates
increase.

In the model, catches, ci, in a longline or purse-seine set group, i, were thus modelled as
samples from a negative-binomial distribution:

ci ∼ NegativeBinomial(mean = µini, shape = θni), (1)

where ni is the number of hooks or sets. The shape parameter, θ, allows for extra
dispersion in the number of captures relative to a Poisson distribution. The negative binomial
distribution has the property that the mean of n samples from a negative binomial distribution
(NegativeBinomial(µ, θ)) is itself negative binomially distributed, with mean µn and shape θn.
For this reason, while ci is the number of catches per group, µi needs to be interpreted as the
mean catch rate per longline hook or purse-seine set. The custom distribution facility of brms
was used to code the negative binomial distribution for aggregated data. The mean capture
rate within each group was then estimated as the exponential of the linear predictor, which
was the sum of fixed and random effects.

A novel configuration of the negative binomial distributionwas trialled inmodel fiĴing. Under
the usual approach to fit a negative binomial GLM, overdispersion compared to mean catch
rates µ is determined by the estimate of a single parameter θ assumed for all observations:

ψ = µ+
µ2

θ
. (2)

This aspect can be challengingwhen combinations of covariate levels have considerably higher
catch rates than others, as high µ combined with low θ can result in error distributions
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predicting implausibly high values (i.e., very long tails) at times. Although estimating
covariate effects on θ as part of themodel is possible, the results can be difficult to interpret as µ
and θ are oĞen correlated. For this reason, any covariate effect aĴributed to θmight otherwise
be confounded with a covariate effect on µ. We modified instead the definition of θ, so that it
includes a new parameter, ν, scaling the extent of overdispersion as a function of µ:

θ → µνθ, (3)

so that overdispersion to the negative binomial distribution becomes:

ψ = µ+
µ2

µνθ
. (4)

This configuration allows for the overdispersion parameter to change as a function of µ: as
ν approaches 2, it cancels out µ2 in the numerator, so that the negative binomial distribution
effectively becomes a Poisson distribution; as ν approaches 0, the additional µn term goes to 1
and the distribution behaves in the usual way. Therefore, adding this new term in the model
allowed for additional flexibility in the realised error distribution between observations with
the estimation of a single additional parameter.

Prior to fiĴing, all observed sets were first aggregated to a spatial resolution of 5◦to match the
resolution of the L_BEST datasets (S_BEST has a 1◦-resolution, but a 5◦-resolution was chosen
for both datasets for consistency in predictions), and observer programme, flag, year, month
and set depth (for longline, shallow or deep) or set type (for purse seine). Because of the low
observer coverage for some fleets, year and locations, and the aggregation at the 5◦-scale, a
minimum number of records were removed for the catch reconstruction component of the
analysis. For the longline fleet, aggregated records with less than 50 hooks observed in total
were removed. Each of the remaining aggregated recordswas considered a “fishing set group”
and catch rates of oceanic whitetip shark were calculated over all sets in the event to use as the
response variable in the GLM. The number of hundred hooks of the sets of the fishing event
was treated as the number of “trials” in the negative binomial distribution.

Candidate model covariates were selected to retain operational features of sets likely to impact
catch rates and environmental variables that might be representative of oceanic whitetip shark
habitat and, therefore, local abundance (Table 2). Wewere limited in the choice of covariates by
their availability in the L_BEST and S_BEST datasets, as model predictions from these datasets
require all model covariates to be available. All models were also trialled with and without
the addition of ν to the negative binomial distribution.

Models were fiĴed with four separate chains and 2000 iterations, including a 1000 iterations
burn-in period that was discarded from posterior samples. Best model selection was
performed on the basis of model diagnostics (including chain convergence) and leave-one-
out cross-validation (LOO; Vehtari et al. 2016). The LOO Information Criterion (LOOIC) is a
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Bayesian equivalent to the Aikake Information Criterion (AIC) metric that balances additional
complexity in model structure against the improvement in model performance. Models using
the same dataset and nested model structures can be directly compared, with lower LOOIC
values indicating models that maximize fit and minimize complexity.

Three independent catch rate models were optimised for the catch reconstruction based on the
fleet.

Longline bycatch fleet

The bycatch model for the longline bycatch fleet was fiĴed separately from the target model
based on different assumptions underlying the response variable. Records belonging to vessel
with flags from Papua New Guinea and Solomon Islands were removed from the analysis. In
previous research by Rice (2012a), sets with evidence of shark targeting were also removed
from the analysis (e.g., the use of wire traces, shark lines or the specification by the observer
that the set was targeting shark). Owing to the poor coverage and reliability of these covariates
over fleet and years, we were more conservative in retaining data, and did not filter sets based
on these variables.

The best model for the longline bycatch fleet was:
OCS.obs | trial(sets) = Year + s(SST, k=3) + HBF.cat + cluster + (1Flag) + (1yy:Flag),
including the ν coefficient to scale overdispersion as a function of average catch rates.

Alternative models included observer programme instead of flag, different configurations
for the oceanography covariates and the flag-year interaction, and also the modelling of the
overdispersion (key diagnostics for the best model are shown in Appendix A of Tremblay-
Boyer & Neubauer 2019).

Longline target fleet

LiĴle is known about the longline target fleet, so that it was not included in recent catch
reconstructions (e.g., Peatman et al. 2018). An estimation of oceanicwhitetip captures assumed
that 5% of effort in the L_BEST database was targeting sharks, but apart from this aspect,
predictions of catches for the targeting fleet were from the same model as that used for the
bycatch longline fleet by Rice (2012a).

In the current assessment, we created a model of catch rates for the target longline fishery.
Given the scarcity of observer records for the countries with this fishery, a subset of
representative flags from Pacific Island countries and territories was retained, in addition
to Papua New Guinea and Solomon Islands sets (American Samoa, Kiribati, Cook Islands,
Fĳi, Federated States of Micronesia, Marshall Islands, Samoa and Tuvalu). Recent records
from Papua New Guinea and Solomon Islands with observer programmes from distant-water
nations were removed, as they were considered to be unlikely to be representative of domestic
fisheries (but noting that there is some evidence of shark targeting by distant-water nations
too). Observer records from Papua New Guinea for 1996, 2000 and 2003 were removed as the
total catches of oceanic whitetip shark in these years were very low, indicating that observed
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catches might not have been recorded. There is evidence that the shark target fisheries in the
Bismarck Sea region have stopped (White et al. 2018); however, based on the uncertainty of
the timespan of target fisheries, we assumed that target fisheries were ongoing for the catch
reconstruction.

The best model for the longline target fleet was:

OCS.obs | trial(sets) = yy + s(SST, k=3) + hbf.cat + cluster + (1:Flag),
including the ν coefficient to scale overdispersion as a function of average catch rates.

This model did not include a flag-year interaction by design, so that the overall temporal trend
in catches would be informed by the catch observed in other Pacific country fleets, but the scale
determined by the vessel flag. This approach was used to compensate for the lack of reliable
records for the target fisheries for some years. Key diagnostics for this model are shown in
Appendix A of Tremblay-Boyer & Neubauer 2019.

Purse-seine fleet

A single model of observed catch rates was built for the purse-seine fleet, including associated
and unassociated sets, but with set type as a covariate to allow for reconstructed catches to be
predicted for each fleet separately.

The best model for the purse-seine fleet was:
OCS.obs | trials(sets) yy + s(dist2coast, k=3) + (1|Flag) + (1|yy:Flag) + SetType.

This model had a random effect for flag and a random-effect interaction for year and flag, and
fixed effect for set type and the distance of sets to the nearest coast. The model including ν did
not result in a considerable improvement to the fit according to the LOOICmetric, presumably
because there was less variation between flags fishing the same area in purse-seine than for
longline catch rates.

Alternative models considered observer programme instead of flag, different configurations
for the oceanography covariates and the flag-year interaction, and also the modelling of the
overdispersion. Key diagnostics for this model are shown in Appendix A of Tremblay-Boyer
& Neubauer 2019.

Extrapolation of observed catch rates to WCPO-wide effort

Catch rates predicted from the observer models were projected at the scale of the Western and
Central Pacific Ocean based on estimates of effort from the L_BEST and S_BEST datasets.

For L_BEST, species-targeting clusters were predicted from species proportion for each record
(as described in Table 2). Hooks-between-float information was missing for numerous records
in L_BEST, especially in earlier years. HBFs are a proxy for the depth of the longline set, and
a key factor for predicting and extrapolating catches of oceanic whitetip shark, as this species
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primarily occupies surface waters.

CCMs recently started reporting longline catch and effort statistics disaggregated by HBF;
however, coverage for many countries remains lacking over most or part of the time period
of this assessment.

In the previous catch reconstruction by Peatman et al. (2018), ratio estimators were used to
classify L_BEST records that were missing HBF information. Here, we used a Random Forest
model instead (Liaw&Wiener 2002), as it allows the inclusion of covariates to predict the likely
depth of sets (instead of assuming that unclassified sets for a country are directly representative
of classified sets). The Random Forest model also provides outputs for the probability of a
record having a given classification, which can be used to propagate uncertainty about this
step into catch estimates as needed.

We used the dataset of HBF-disaggregated L_BEST to train a Random Forest model to
predict whether a record should be assigned to a shallow- (<10 HBF) or deep-effort category
(≥10 HBF), assuming a binomial error distribution:

• We used the Random Forest algorithm provided in the R package “randomForest” (Liaw
&Wiener 2002).

• Covariates used to build the tree were: year, month, targeting cluster, 5◦-longitude cell,
5◦-latitude cell, and catches for albacore, yellowfin, bigeye and bluefin tuna, swordfish
and other billfish (in numbers). We did not use shark catches, even though these data are
available in L_BEST and likely provide information about set depth since sets that target
sharks tend to be shallow. These data were not included as low shark catches in the early
part of the time series are misrepresented owing to the lack of reporting.

• The L_BEST.HBF dataset was split evenly between a training and a testing dataset. The
training dataset was used to fit the Random Forest model and model performance was
assessed by predicting HBF classification for the testing dataset.

• The Random Forest model was tuned by first running the model with a high number of
trees (500), and verifying the Area-Under-the Curve score to asses the number of trees
required to reach a plateau. Five covariates were randomly considered at each node for
spliĴing. The optimal tree depth was assessed to be 200.

The Random Forest model with optimised parameters was used to assign shallow- or
deep-effort depth to L_BEST records lacking HBF information, based on the probabilities
estimated by the binomial error model. Where partial HBF information for a stratum was
available, predictions were only made for the effort lacking HBF classification. An uncertainty
distribution of the final predictions of HBF classification for L_BEST by member countries
was estimated by drawing 1000 draws from a Bernoulli distribution for each L_BEST record,
assuming the probability of success is the probability estimated by the Random Forest model
of the record being classified as deep. Predictions of the proportion of deep sets over time by
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fleet is shown in Figure 4, including the fit to the training dataset and 95% credible intervals
based on sampling of the error distributions.

Once all effort in L_BEST was assigned to a shallow- or deep-set category, we were able to
make predictions of L_BEST-wide catch for the assessment region, based on the catch models
developed for the longline bycatch and target fleets (Figures 5 and 6). Predictions for the target
longline fleet were derived on effort assigned to PapuaNewGuinea and Solomon Islands only.

The S_BEST dataset already contained all the required covariates (historical catch predictions
for the associated and unassociated purse-seine fleets are shown in Figure 7). Predictions of
catches over time by fleet and year were aggregated for each model over each posterior draw,
and summary statistics extracted. Themedian predictionwas used as a baseline catch scenario,
and the 90th quantile of the predictions as a high catch scenario. Discard and post-release
mortality scenarios were then applied to these overall catch predictions by fleet as described
in Section 2.2.4.

2.2.3 Trade-basedhistorical catch estimates

Reconstructing catches from observer data over 1995–2016 can be difficult because of the
low coverage rates for longline observer programmes throughout the time series, operational
challenges for purse-seine observers to estimate accurate shark catches over the full set given
the process of brailing and sorting, and sparse and unreliable reporting of shark catches
for both purse-seine and longline programmes before 2003. An alternative approach was
developed by Clarke et al. (2006b) and more recently applied to reconstruct historical silky
shark catches (Clarke 2018). This approach relies on an estimate of the number of individuals
(or biomass) of the species of interest used in the fin trade for a reference year in a sampled fin
market (the “anchor point”), an estimate of the share of the global finmarket transiting through
the sampled market over time, and a scaling method to assign global catch to a specific region.

Here, we provide a brief summary of the approach byClarke (2018) applied to oceanicwhitetip
shark:

• Clarke et al. (2006b) estimated traded fin weights by species and fin size by sampling the
Hong Kong market between 2000 and 2002. They estimated the corresponding number
and biomass of sharks by species, with conversion factors also accounting for fin type
(dorsal, pectoral and caudal). This number was projected to the global scale based on an
estimation of Hong Kong’s share of the global fin trade during the sampling period. The
resulting estimate of global catch for oceanic whitetip shark (in thousand individuals)
was 600 (95%CI: 220–1210).

• An estimate of shark fins imported by Hong Kong for each year was calculated from
corrected government records. Hong Kong’s share of the global fin market for each
decade since the 1980s, and its relative change compared to the anchor year of 2000,
was estimated from expert judgement. This comparison reflected a declining share,
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owing to an increasing proportion of the fin trade occurring through mainland China
and southeast Asia.

• The global catch in numbers for oceanic whitetip shark was predicted in a Monte Carlo
framework by drawing randomly from the distributions defined for each quantity: a
triangle distribution for the catch of oceanic whitetip shark in the Hong Kong trade in
2000, with catch ∼ triangle(600, 220, 1210); a constant for Hong Kong market imports
relative to 2000; a uniform distibution for the relative change (ratio) in the share of
Hong Kong’s market to the global market compared to 2000, with the lower and upper
bounds informed by expert opinion. The predicted catches is the product of these three
quantities.

• Global catch estimates were then assigned to the Western and Central Pacific Ocean by
dividing the global shark trade with three alternative methods: area of the global oceans
made up by theWestern and Central Pacific Ocean, proportion of the global fishing effort
occurring in the Western and Central Pacific Ocean, proportion of the global tuna catch
occurring in the Western and Central Pacific Ocean (see details in Clarke 2018).

Predictions of oceanic whitetip shark catches for the Western and Central Pacific Ocean under
the trade-based method revealed that total catches were predicted to increase over time, based
on the increased size of theHongKong fin trade in conjunctionwith a decreasing globalmarket
share (Figure 8). The predictions were also based on the assumption that the proportion of
oceanic whitetip shark to all shark fins traded in the Hong Kong market stayed constant over
time. The estimates were greater when assigning catch to the Western and Central Pacific
Ocean based on the proportion of total tuna catch. The estimates based on an area-breakdown
and an effort-breakdown were similar in 2000 (the anchor year).

The 2000 estimate of Hong Kong catch quantity used to anchor the reconstruction was
considered accurate, as fins of oceanic whitetip shark are easily identifiable, minimising
erroneous fin category classification by traders in the statistics (Clarke et al. 2006a). In the
DNA-analysis of species composition by market fin trade category, 100% of samples of the
market fin category called Liu qiu belonged to oceanic whitetip shark. This species was the
only species that had a perfect match to a fin market category (Clarke et al. 2006a). For this
reason, estimates of traded fins for oceanic whitetip shark from Hong Kong market records
should be more precise than for other species.

The assumption of constant species composition in the Hong Kong fin trade since 2000 is a
limitation in the application of the trade-basedmethod to oceanicwhitetip shark in theWestern
and Central Pacific Ocean. Clarke et al. (2006a) estimated that the proportion of oceanic
whitetip shark in the Hong Kong fin trademarket was 1.8% (95%CI: 1.6–2.1%). This estimate is
unlikely to still be current if the abundance of the Western and Central Pacific Ocean stock has
declined to the levels predicted by Rice and Harley (2012), as the depletion of oceanic whitetip
shark is predicted to be more severe than for most species of sharks, noting also the presence
of a non-retention policy for the laĴer part of the time series. At the scale of the Pacific Ocean,
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oceanic whitetip shark fins may reach the Hong Kong market from the eastern Pacific Ocean,
as there are shark fisheries in Central and South American countries (e.g., Mexico, Cardeñosa
et al. 2018). Nevertheless, these fisheries should not be accounted in the catch estimates for the
current stock assessment given they occur outside of the assessment region.

A recent study resampled the Hong Kongmarket to estimate species composition from traded
fins, and found 1% of samples were from oceanic whitetip shark (Fields et al. 2018). Although
this number cannot be directly compared with previous values by Clarke et al. (2006a), it is
useful as a reference. In contrast, official trade statistics from the Convention on International
Trade in Endangered Species of Wild Fauna and Flora (CITES) database reported 5.6% of total
fin weight assigned to oceanic whitetip shark; however, when trimmings were genetically
analysed, less than 2% of samples were predicted to belong to this species (Cardeñosa et al.
2018).

Without further sampling, there appears to be no robust method to ascertain the proportion
of oceanic whitetip shark fins from the Western and Central Pacific Ocean in the Hong Kong
market in the recent period. Based on the likely decline in the proportion of fins of this species
due to the population decline, the reliability of the trade-based historical catch reconstruction
was considered highest in 2000 for this species, and lower thereaĞer.

The predictions of historical catch for oceanic whitetip shark using the trade-based approach
are shown in Figure 8. We were initially going to include a separate catch scenario based on
these estimates. Given the concordance between this approach and the alternative based on
observer data for the year 2000, as well as the problematic assumption of a constant WCPO
oceanic whitetip shark proportion in the global fin trade, we decided to only retain catch
scenarios from the observer-based catch reconstruction approach.

2.2.4 Post-releasemortality

WCPFC non-retention measures like CMM2011-04, country-specific legislations like shark
sanctuaries1, declining market demand for shark products, gear logistics and/or concerns over
crew safety can lead to part or all of the catch for some species of sharks to be discarded.
If discarded individuals are alive when released, an unknown proportion might survive the
catch-and-release event. Under WCPFC Circular 2016/51, the WCPFC and funding partners
commissioned a study aimed at estimating post-release mortality (PRM) of sharks from
discarded bycatch in longline fisheries. No oceanic whitetip shark were included in the study
but findings for shortfin mako and silky shark predicted higher rates of PRM for smaller
sharks as well as sharks released with long trailing leaders relative to their size. Additional
datasets highlighted that silky sharks that were injured when released alive had lower chances
of survival. Overall, it was predicted that the proportion of sharks that survive the combination

1In the Western and Central Pacific Ocean, shark sanctuaries or shark-fishing prohibitions have been
implemented over part or all of the Economic Exclusive Zones of Cook Islands, Federated States of Micronesia,
French Polynesia, Guam, New Caledonia, Marshall Islands, Palau and Tokelau. Most of these measures were
implemented between 2012 and 2015.
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of haulback, crew handling and post-release mortality was 0.44 and 0.56 for shortfinmako and
silky sharks, respectively.

Nomenclature for mortality at different stages of the fishery interaction from hooking to
hauling and crew handling, and following release if alive, differs between authors. In this
report we used the term ‘discard mortality’ (DM) to refer to the total mortality resulting from
the fishery interaction across all stages, and ‘post-release mortality’ (PRM) to refer only to the
mortality rate for the stage following individuals being released to the water alive.

Catch reconstructions that do not account for discard mortality implicitly assume a discard
mortality rate of 100%. This assumption was considered accurate for purse-seine sets as most
sharks are brought on-board and go through the process of catch brailing and sorting; it was
also considered accurate for longline fisheries targeting sharks (by definition). Nevertheless,
a proportion of sharks caught as bycatch and released from tuna and swordfish longline
sets are likely to survive. Common Oceans (ABNJ) Tuna Project (2019) included an analysis
by SPC of recent longline observer data (2017–2018) that assessed the proportion of oceanic
whitetip shark individuals released alive. They found that 75% of individuals were released
alive in “good” condition (assessed by the observer). In addition, no oceanic whitetip shark
individuals were marked as retained, indicating that CMM2011-04 was fully operational for
those years (for comparison many fleets still retained individuals over the post-CMM-2012-04
period of 2013 to 2016 covered in this analysis). Data from the two most recent years were
considered beĴer suited to estimate the proportion of individuals released alive, owing to the
improved observer coverage and higher reliability of the “condition” covariate required to
assess the state of individuals at release.

We used 25% mortality (75% survival) as an optimistic lower bound for the mortality rate
for longline discards, and 100% as a pessimistic upper bound (0% survival). We also added
an intermediate scenario of PRM for individuals released alive, informed by the findings
of Common Oceans (ABNJ) Tuna Project (2019). Under this intermediate scenario 25% of
individuals released alive suffer mortality following the release event, in addition to the 25%
mortality rate applied to individuals before they are discarded under the optimistic survival
scenario. This amounts to a total discard mortality of 43.75% covering all stages of fishery
interactions, which is similar to the value estimated by Common Oceans (ABNJ) Tuna Project
(2019) for silky shark (44%) and lower than that estimated for shortfin mako (56%).

A 100% discard mortality rate was the value implicitly used by Rice and Harley (2012) in the
reference case and sensitivity runs, as hooking, crew handling and post-release mortality were
not accounted for in catch estimates (noting also that CMM2011-04 was not yet active over
the timespan of the earlier 2012 assessment). White et al. (2018) surveyed observed trips in
the shark-targeting fisheries of Papua New Guinea before their closure, and reported that 36%
of sharks were dead or dying when brought onboard, and 70% of sharks were dead when
discarded. Our three scenarios bound this laĴer value and also the estimates for shortfinmako
and silky sharks in CommonOceans (ABNJ) Tuna Project (2019). Table 3 summarizes the catch
scenarios used in the stock assessment.
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Given that discard rates have changed over time and between fleets, and that the adoption of
CMM2011-04 was not immediate across fleets, we predicted the probability of an individual
oceanic whitetip shark being discarded by fleet over year based on the observer data. We
usedMarkov chainMonte Carlo (MCMC)methods with the R package “brms” (Bürkner 2017)
to model the probability of an individual being discarded. The observer longline dataset was
filtered to retain only setswhere at least one oceanicwhitetip shark individual had been caught.
We aggregated data by flag, year, month and 5◦-cell, and calculated the numbers of oceanic
whitetip shark individuals discarded and retained from reported fate codes (‘DXX’ vs. ‘RXX’).
Individuals discarded with the fate code “DFR” (discarded-fins-retained) were considered as
retained. Weused a binomial error distributionwhere the number of successeswas the number
of discarded individuals, and the number of trials the total number of oceanic whitetip shark
individuals caught over the aggregated report. The model was fiĴed with a categorical effect
for year and a random effect for flag. The random effect for flag allowed the prediction of
discard rates for flags without observed fishing sets. The model was run with four chains over
2000 iterations, discarding the first 1000 as part of the burn-in period. Summary statistics and
predictions by fleet were obtained by drawing from the posterior samples and extracting the
median and relevant quantiles.

The year effects estimated for the proportion of individuals discarded by year, independent of
flag, showa slow increase in discard rates over time from1995, and a distinct increase aĞer 2012
(Figure 9). Discard effects estimated for each flag are shown in Figure 10. These are combined
into a final model fit in Figure 11 showing both observed and predicted discard rates by key
longline observed flags over time.

DM-adjusted catch for the longline bycatch fleet are shown in Figure 12 under the three
different scenarios described above applied to the median (baseline) and high catch scenarios.
We assumed 100% discard mortality for all catches from the target longline fishery, as well as
the two purse seine fleets.

2.2.5 CPUE standardisation

Although the coverage rates of observed longline effort were considerably lower than for
purse seine, the reliability of catch numbers estimated by longline sets is considered much
higher as observers report every hook with a positive catch event. The previous assessment
for this species (Rice 2012b) included standardised indices for other fleets, but these indices
were not used in the reference model or the uncertainty grid. At the SPC 2019 Pre-Assessment
Workshop (PAW) (Pilling & Brouwer 2019) it was agreed to focus on developing standardised
CPUE indices for the longline bycatch fleet, as the underlying data were deemed the most
reliable of those available, and also covered the greatest extent within the assessment region.

A similar approach to fiĴing the CPUE models was used to that for the catch reconstruction
model, including the use of a negative binomial error distribution with an additional ν
parameter (Section 2.2.2). In practice, the year effects estimated from the catch reconstruction
models can be considered to be standardised CPUE rates. Nevertheless, a constraint to
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this approach of fiĴing the catch reconstruction models was that total catch rates would
be predicted from the L_BEST and S_BEST datasets, which meant that (1) sets had to be
aggregated at a lower spatial resolution of 5 degrees (for the longline dataset), and (2) only
covariates available in L_BEST and S_BEST could be considered. In addition, as we were
predicting catches across all flags fishing in the Western and Central Pacific Ocean, we had
to retain as many flags as possible in the analysis to inform the value of the flag effect in the
random effect distribution. Otherwise, the flag effect for a country fishing in the Western and
Central Pacific Ocean but excluded from the model fit would be randomly drawn from that
distribution. For this reason, we retained as many different flags as possible in the model
dataset. These constraints were not present for the CPUE analysis as the key result was the
estimated year effects, independent from flags.

As a result, we filtered the observer dataset to retain only observer programmes that had
consistent observer coverage over time across the spatial distribution of oceanicwhitetip shark.
These observer programmes were: American Samoa, Fĳi, Federated States of Micronesia,
Hawaii, Kiribati, Marshall Islands, New Caledonia and French Polynesia. Sets were filtered to
retain only those occurring in SST ≥16◦C; sets with catch rates higher than the 99.5th quantile
of positive catch rates were excluded as they were considered to be active shark targeting. The
remaining sets were aggregated over flag, programme code, HBF category (shallow or deep),
year, month, and 1◦cell.

A range of model structures and combinations of covariates were trialled with the objective of
improving model diagnostics and minimising the LOOIC metric. Covariates are described in
Table 2.

The best model was:
OCS.obs | trial(sets) = Year + s(SST, k=3) + (1|Program) + s(HBF, k=4) + cluster + (1|Year:Program),
including the ν coefficient to scale overdispersion as a function of average catch rates.

This model was similar to the catch reconstruction model for this fleet, but included hooks-
between-floats as a continuous instead of categorical variable, and an effect on observer
programme instead of flag. These changes were based on comparisons between alternative
models using the LOOIC metric.

The first year of the CPUE time series (1995) was the model’s intercept. Standardised year-
effects for 1996 to 2016 were scaled according to the intercept. The MCMC draws were mean-
standardised and back-transformed from the log-link, and summary statistics for each year
(median, 2.5th and 97.5th) extracted to form the standardised index of abundance. The mean-
standardisedCPUE index resulting from the bestmodel is shown in Figure 13, with diagnostics
in Appendix A of (Tremblay-Boyer & Neubauer 2019).

2.2.6 Length-composition data

Length information for captured oceanic whitetip shark individuals exists for most
observed longline catch events. Purse seine samples are considerably sparser given length
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measurements by purse seine observers are opportunistic.

We extracted length measurements from SPC’s longline and purse seine observer databases,
filtered to only retain locations within the assessment region (Western and Central Pacific
Ocean bounded by 30◦N and 30◦S) from 1995 to 2016. There was a total of 17457 and 1340
individuals measured in longline and purse seine catch, respectively. Of the total for longline
fisheries, data for 6340 individuals were discarded of no length measure was specified, or if
no length-length conversion was available for oceanic whitetip shark for the length measure
used. Lengths for remaining individuals measured in fork length (FL, tip of the snout to split
in the fork) were converted to total length (TL) by adapting the TL-to-FL relationship reported
in Joung et al. (2016):

TL = 1.22× FL+ 2.29.

To our knowledge, this conversion is the only FL-to-TL conversion available for this shark
species in the Pacific Ocean. The most common length-length relationship otherwise used by
authors in Pacific Ocean studies of oceanic whitetip shark is:

TL = 1.397× PCL,
where PCL is the pre-caudal length, but this relationship is from a 1976 study of South African
oceanic whitetip shark (Bass 1976).

Records with total lengths less than 55 cm were discarded based on the lower bound reported
for length-at-births at this value (Seki et al. (1998); Table 1). For the longline fleets, we also
removed two individuals with TL exceeding 350 cm, as their sizes exceeded the measure of
maximum length reported for this species of 340 cm (Clarke et al. 2015).

Lengths measurements were split between the four model fleets: longline bycatch, all flags
but Papua New Guinea and Solomon Islands (n = 7867), longline target fisheries, including
Papua New Guinea and Solomon Islands (n = 3048), purse seine associated sets (n = 1037) and
unassociated sets (n = 209). All measured individuals from Papua New Guinea and Solomon
Islands were assumed to come from the target longline fleet as there was no reliable covariate
to separate shark targeting sets. The resulting overall distributions are shown in Figure 14.

When disaggregated over time, no clear trend in length composition was apparent, except for
the last few years of the assessment period, when there was a decline in the average lengths
measured for the longline by-catch fleet (Figure 15). In general, this aspect could be interpreted
as a sign of increasing fishingmortality on the population. Nevertheless, the onset of this trend
coincided with the adoption of CMM2011-04 and a series of shark protection measures across
the Western and Central Pacific Ocean. In addition, larger sharks are more difficult to handle,
and might preferably be discarded by cuĴing the lead before they are brought onboard so that
these large-sized individuals may not be measured.
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There were also a clear latitudinal spatial trends in measured lengths in the longline bycatch
fleet across the Western and Central Pacific Ocean (Figure 16), which was evident across
observer programmes activewithin the same area (Figure 17). Alternatively, this findingmight
also be due to the distribution of shallow versus deep longline sets, as larger individuals could
be more frequently caught in deeper sets. We aĴempted to reweight the data to ensure that
the representation of latitudes stayed constant over time, but the high number of empty or
low frequency length bins when disaggregated between latitudes and year created unrealistic
features in the resulting re-weighted distributions. Once data were prepared as described
above, the length observations were thus aggregated by fleet, year and 5 cm bins, before using
them as catch-at-length inputs to the stock assessment without further processing.

2.3 Stock assessmentmodel

The assessment was conducted with Stock Synthesis version 3.30 (Methot Jr & Wetzel 2013).
Stock Synthesis is an integrated statistical length-based, age-structured population model that
can use a range of data inputs to calibrate the underlying population dynamics model. It has
been used in a number of previous shark assessments in the Pacific, including oceanic whitetip
shark (Rice & Harley 2012), shortfin mako (ISC Shark Working Group 2018), and silky shark
(Clarke et al. 2018). For the current assessment we used three data inputs to inform the model:
historical catches, catch-per-unit-effort, and length-frequency data. We maintained the four-
fleet structure used in the previous stock assessment, spliĴing the longline fishery into bycatch
and target fleets, and the purse seine fishery into fleets of associated and unassociated sets. We
describe below the model structure and parameters. Additional technical details on the Stock
Synthesis modelling framework can be found in Methot Jr and Wetzel (2013).

A shark life-history expert panel was convened in 2015 to review existing information for
all biological parameters for WCPFC sharks, including oceanic whitetip (Clarke et al. 2015).
The biological parameters used for this assessment were informed from this review but also
accounted for two more recent papers (published aĞer the expert workshop) that estimated
growth and maturity for oceanic whitetip sharks sampled in the WCPO (Joung et al. 2016 and
D’Alberto et al. 2017). Biological parameters used in the assessment are described below, see
also Table 1 for a comparison between studies.

2.3.1 Population dynamics

Spatial and temporal span: The model covers the WCPFC convention area bounded by the
parallels of 30◦Nand 30◦S, and assumes a singlewell-mixed stockwithin this region (Figure 3).
The assessment covers the period 1995 to 2016. The first year matches the start of observer
programs in the WCPO, and thus the collection of shark catch statistics. The end year of 2016
was chosen to maximize the number of observer records as a significant number of entries for
2017 were still missing at the time of extraction from SPC’s databases.

Sex-structure: Population dynamics are sex-structured but in practice this only scales the
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estimates of spawning biomass since the only sex-differentiated input is that for the weight-
length relationships. The sex-differentiated weight-length relationships from Seki et al. (1998)
were translated from pre-caudal length (PCL) to total length (TL) using the conversion from
Bass (1976), yielding:

1.1810−5 × TL2.86 for males;
2.0210−5 × TL2.76 for females.

There was otherwise no consistent sex-specific length signals from growth studies, or evidence
of a sex ratio differing from 1:1 (Joung et al. 2016). Recruitment was thus evently split between
males and females at birth. Length-frequencies inputs were pooled across males and females
(noting also that only some of the measured individuals were assigned a sex by observers).
Growth (see below) was also assumed to be the same for males and females.

Recruitment: The model has an annual time-step with recruitment following a Beverton-
Holt relationship and a function of spawning biomass at the start of the year. Steepness,
representing the proportion of recruits of R0 when the stock is at 20% of unfished spawning
biomass, was fixed at 0.409 following Rice and Harley (2012). In the absence of other
information, they defined a range of low steepness values reasonable for sharks, of which
0.409 was the mid-point. Deviates from the stock-recruit relationship (SRR) were estimated
butminimal deviation from the relationshipwas specified (σR = 0.1) as recruitment variability
in sharks is unlikely to be high. Further, there was no modal structure in the length-frequency
data that could have informed the model on the presence of weak or strong cohorts between
years.

Age and growth:

The growth for the diagnostic casewas parameterisedusing a recently published sex-combined
Von Bertalanffy growth function for oceanic whitetip sharks in the North-West Pacific (Joung
et al. 2016, see also Section 2.4). This relationship was chosen as it ressembled that estimated
from another recent WCPO study (D’Alberto et al. 2017) but also included larger sample sizes
for fecundity and maturity estimates. A comparison of the different growth curves available
for this species in the Pacific is shown in Figure 1, including the Seki et al. (1998) curve that
was used in the previous assessment.

The population was divided into 25 age classes including a ‘plus-group’ for individuals older
than 25 years. This differs from the maximum age of 36 used by Rice and Harley (2012). The
shark life-history expert panel instead suggested a longevity of 17 years based on observed
values (Clarke et al. 2015). D’Alberto et al. (2017) in Papua NewGuinea estimated that females
mature at 15.8 years of age (albeit from a sample size of two) so 17 years seems unrealistically
low. We used a value of 25 as a compromise between these two bounds, and also based on
the growth parameter k (see below) and the approach from Mollet et al. (2002) developed for
other elasmobranchs.

Lengths were apportioned to 5 cm bins, with a minimum bin size of 55 cm and a maximum
bin size of 325 cm. The variation in length-at-age was set to a constant CV of 8.5% of the mean
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length-at-age. This value was set to mirror that used in Rice and Harley (2012), noting that the
same value was used for the recent silky shark assessment (Clarke et al. 2018), and a similar
value of 10% was used in the 2016 North Pacific mako shark assessment (ISC Shark Working
Group 2018).

We did not aĴempt to estimate growth due to the lack of growth-related information in the
input datasets.

Natural mortality: Natural mortality was fixed and assumed to be constant across all age
classes. For the diagnostic case it was fixed at 0.18, similar to the previous stock assessment
for this species. This value was calculated according to the relationship of Pauly (1980).

Maturity and fecundity: Maturity follows a logistic relationship as a function of length. 50%
of individuals are assumed to be mature at 194cm, following Joung et al. (2016) who found
almost no difference for this value between males and females. This corresponds to an age of
about 9 which is much lower than what was found by D’Alberto et al. (2017), but their sample
sizes for mature females were very small. The first mature age is set at 8; this differs from Rice
and Harley (2012) who used 6. Fecundity is related to female biomass and set to 6 pups per
female, independent from length or weight (Seki et al. 1998).

Initial population size and structure: There is liĴle to no information about initial age
structure, pre-1995 exploitation rates or catches for oceanic whitetip sharks prior to the first
year of the assessment (1995). It is reasonable to assume that the population had already been
in an exploited state given its vulnerability to longline fishing gear and the history of this fleet
in the WCPO (e.g. Bonfil et al. 2008).

In the absence of an initial age-structure, there are two approaches to parameterize the initial
population state in Stock Synthesis. The first approach fits an initial equilibrium F without
fiĴing to uncertain initial equilibrium catches. This gives the model the flexibility to set the
initial F in a way that improves fit during the main assessment period when catches are beĴer
known. The alternative is to provide an estimate of initial equilibrium catches pre-1995, and
fix the equilibrium initial Fs.

We tried both approaches but given the sensitivity of early depletion estimates to initial F
values, we used this value as an axis in the structural uncertainty grid (see Table 4) and fixed
it to a cumulative value of 0.15 across fisheries for the diagnostic case. Given the lack of
information on pre-1995 catches, we set equilibrium catches for each fishery to the average
of the catch for the first five years (i.e. 1995-1999). We also included a one-off sensitivity run
where initial F was estimated (see Section 2.4).

2.3.2 Fishery dynamics

Fishing mortality:

Fishing mortality in Stock Synthesis is directly estimated to match the observed catch. Fishing
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mortality is modelled using a hybrid method that first calculates the initial harvest rate from
Pope’s approximation, then iteratively adjusts a continuous F so that it matches corresponding
catches for each fishery at each time step (Methot Jr & Wetzel 2013). Annual catches
were specified in numbers and taken halfway through the year from each fishery. In the
diagnostic case, catches for each fleet are assumed to be knownwith very liĴle error (CV=0.05).
Uncertainty about catch levels is instead accounted for as part of the structural uncertainty grid
(see Table 4).

Selectivity:

Selectivity defines the proportion of the population that is vulnerable to each fleet for each
length- or age-class. We defined selectivity as length-based and time-invariant for each fishery.
Selectivities were estimated in the exploration phase but fixed for the diagnostic case and
the structural uncertainty grid. This was done to prevent unrealistic selectivity fits for grid
runs using extreme combinations of axis levels. We used a double-normal selectivity for
each fleet. Double-normal selectivities allow a range of selectivity shapes relevant to oceanic
whitetip shark, fromdome-shapedwith different spread for the right-hand and leĞ-hand limb,
to an asymptotic shape with full selectivity for the larger length classes. Based on model
diagnostics we assumed an asymptotic shape for the bycatch longline fishery and a dome-
shaped selectivity for the remainding fleets (i.e. with selectivity declining back to zero for
the larger length classes). A dome-shaped selectivity would make more sense for longline
fisheries where larger sharks should be able to bite-off the hook if the lead ismonofilament, but
diagnostics for an asymptotic shapewere beĴer for the bycatch longline fishery. Conversely, an
asymptotic shape could alsomake sense for purse seine fisheries. In practice however, very few
large individuals were observed in purse seine length samples, such that diagnostics for dome-
shaped selectivities for those fleets were much beĴer. We accounted for these uncertainties by
adding one-off sensitivities including dome-shaped selectivity for the longline bycatch fleet
and asymptotic selectivities for the purse seine fleets.

Catchability: Catchability is estimated as a scaling constant between the expected value for
the fiĴed CPUE index and corresponding population numbers. It is assumed to be constant
over time for the standardized fleets (i.e. the bycatch longline fleet).

2.3.3 Statistical fit to observations

Stock Synthesis estimates population and fishing parameters by minimizing the negative log-
likelihood of an objective function from the provided input datasets or assumptions.

Index of abundance (CPUE): A single CPUE index was included in the stock assessment
model, for the longline bycatch fleet (Section 2.2.5). The standard error for each year was set to
0.15 on the log-scale in the diagnostic case (i.e. CV=0.15) but this assumption was also tested
with one-off sensitivities (Section 2.4).

Length-composition: Length compositions for all fleets were included (see Section 2.2.6) with
the variance determined by the observed sample size and frequencies. The variance adjustment
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scales the effective sample size for each fleet compared to the actual sample size and was set
to 0.01.

Stock-recruit relationship: The stock-recruit relationship (SRR) was assumed to follow a
Beverton-Holt spawner-recruitment relationshipwith a steepness of 0.409 and normal deviates
assuming σR = 1 standard deviation for the log-recruitment.

For the oceanic whitetip shark the objective function for themodel was thus composed of three
main components: the fit to the bycatch longline CPUE index (assuming a lognormal error
structure), the fit to the length-composition data (assuming amultinomial error structure), and
the fit to the assumed stock-recruitment relationship (assuming a lognormal error structure).

An additional component for the likelihood could be the deviation from specified prior
distributions, but no priors were used for the parameters in this model.

See appendix A in Methot Jr and Wetzel (2013) for more details on the formulation of each of
the components.

2.4 Assessment strategy

During the model development phase we first focused on improving the fits to the observed
data (CPUE and length) and obtaining a stable likelihood profile with an informative
minimum. A key part of the early exploration involved assessing which parameters could be
informed from the input data and which needed to be fixed. In parallel, different approaches
were trialled to handle conflicts between the main sources of input data, as CPUE indicates a
steep decline in abundance but there was no clear disappearance of large individuals in the
length-composition samples for the same time-period.

The diagnostic case was chosen as the version of the model with the best fit to the data while
also making reasonable assumptions about model parameterization. From this diagnosic case
a set of one-off sensitivities was chosen to test the impact on model results of choices about
fishery or biological parameters for which there are otherwise no clear justification. These
sensitivies are outlined here.

Steepness: Steepness is a challenging parameter to estimate from observations or within a
stock assessment model, but it tends to be very influential on assessment predictions given it
mediates the relationship between spawners and recruits. We examined the impact of values
of steepness of 0.34 and 0.49 in comparison to that of 0.409 used in the diagnostic case.

Natural mortality: Natural mortality is another parameter that is hard to estimate and is
influential in most assessments. We tested alternative values of 0.1 and 0.26 in addition to
the value of 0.18 used in the diagnostic case.

Alternative growth profile: Growth was a key uncertainty in this assessment given the
differences between the two more recent growth studies for oceanic whitetip shark. Changing
the parameters for the growth curve can not bemade in isolation of other fecundity parameters
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that also differed between the biological studies, like the length at 50% maturity, as well
as adjustments to the shape of the selectivity curves. We created an alternative growth
and fecundity assessment ‘profile’ based on (Seki et al. 1998) to reflect those differences. A
comparison between the variables that differ between the Joung and Seki growth profile is
shown in Figure 18. Note that for the Seki profile we also used 30 age-classes instead of the 25
used in the diagnostic case, and lowered the first age at maturity to 4 instead of the value of
6 that was used in the previous assessment. This adjustment was done because the L50 from
the maturity curve estimated by Seki et al. (1998) corresponded to an age of 4.5 on the growth
curve from that same study, and so was not consistent with an age at first maturity of 6.

Catch scenarios: Historical catch estimates form a high source of uncertainty in sharks
assessments in general, and this one in particular. The diagnostic case scenario used the
median prediction from the catch reconstruction model assuming a 25%mortality on discards
and 0% post-release mortality on individuals released alive. Figure 19 shows a summary of
historical catches under this catch scenario for all fleets. Two alternative discard mortality
scenarios were included, one where 25% of individuals released alive suffered additional
mortality and onewhere the overall discardmortalitywas 100% (see Section 2.2.4). In addition,
a high catch scenario seĴing annual catches to the 90th quantile of predictions from the
catch reconstruction models was used in combination with the 3 discard mortality scenarios
described above. This lead to a total of 6 catch scenarios, described in Table 3.

Initial fishing mortality: Initial fishing mortality was fixed in this assessment which means
that it can scale the productivity on the stock based on the combination of initial fishing
mortality and equilibrium catch (e.g. a higher initial F for the same amount of catch implies a
less productive stock than one with a lower initial F). We used scenarios of cumulative initial
Fs across fleets of 0.1 and 0.2 in addition to the value of 0.15 used in the diagnostic case. We
also included a scenario where we let Stock Synthesis estimate initial F for each fleet based on
fit to the observed catch time series, without specifying initial equilibrium catches.

Standard deviation in recruitment: In the diagnostic case very liĴle deviation around the SRR
(σR) was allowed under the assumption that such deviations should be minimal for a species
of shark. We tested the impact of this assumption by seĴing σR=0.2, thus allowing a greater
amount of deviation.

Dome-shaped selectivity on longline bycatch fleet: The diagnostic case assumed asymptotic
selectivity for the bycatch fleet, i.e. full selectivity for larger individuals. We tested this
assumption by forcing the right-hand limb of the selectivity curve for the longline bycatch
curve back to zero, resulting in a dome-shaped selectivity for this fleet. Under this sensitivity,
there are thus no asymptotic selectivities for any fleet.

Asymptotic selectivities on purse seine fleets: The diagnostic case assumed dome-shaped
selectivity for both purse seine fleets, implying that large individuals are not caught by this
fleet. We tested this assumption by seĴing selectivity to be asymptotic for these fleets instead.

Estimating all selectivities: Selectivities in the diagnostic case were fixed based on previous
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model explorations. Under this sensitivity run we allowed all six parameters for the double-
normal selectivities of the four fleets to be fiĴed by the assessment model.

Fixed CPUE standard error: The standard error estimated from the CPUE standardization
model were quite large especially in the earlier part of the time series. This implied that
the assessment model was less constrained by the CPUE index, and resulted in poor fits to
the CPUE. We forced the model to a closer fit to the CPUE in the diagnostic case by seĴing
the CPUE CV to 0.15 but also tested the sensitivity of predictions to the chosen value with
alternatives of 0.10 and 0.20.

CPUE standard error from model: As above but using the standard error estimated from the
CPUE standardization model directly.

Decreasing recruitment lambda: Stock Synthesis allows the contribution of each component
to the total likelihood to be independently modified. In the diagnostic case the total likelihood
is strongly driven by assumptions about recruitment. With this sensitivity run we decreased
by half the importance of recruitment in the total likelihood calculation.

Finally, based on the results from the one-off sensitivies and previous discussions at the Pre-
Assessment workshop (Pilling & Brouwer 2019), a set of uncertainty axes for the model was
defined outlining alternative values for key uncertain and influential model or biological
parameters. The combination of all levels across axes forming the structural uncertainy grid
is described in Table 4 and results in a total of 648 model runs.

2.5 Referencepoints

Final indicators of stock status are determined from summary statistics of the model runs
included in the structural uncertainty grid. Higher weights can be given to levels within
specific axes that are deemed more plausible. We calculated reference points over the full grid
with equal weights to all levels but included suggested weights for each axis level in Table 4.

We use the following reference points as indicators of stock status, noting that the WCPFC
has yet to adopt reference points for sharks. These metrics can be calculated over a single
year (e.g. the last assessed year, 2016) or a recent time-period (e.g. the last 3 or 4 years of the
assessment, excluding the last year). In this assessment the latest time-period was 2016 and the
recent time-period was 2013 to 2016. This definition was used for both F -based and SB-based
reference points. The ‘recent’ range was chose to represent the post-CMM2011-04 period (i.e.
aĞer January 1th 2013 when the measure became active). See Table 5 for a summary of all catch
measures and reference points used.

• SB/SB0: The unfished spawning biomass (SB0) can be calculated from the estimated
recruitments via the Beverton-Holt SRR. This allows the comparison of the exploited
population for an index year or time-period to the population subject to natural mortality
only. This definition does not account for environmental impacts on recruitment, so SB0

is always equal to SBF=0. At the PAW (Pilling & Brouwer 2019) it was agreed to present
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SB/SB0 as a useful metric of stock status that is also used for other stocks managed by
the WCPFC. Under this metric, an increase in depletion is linked to a lower value for
SB/SB0 and a worsening in stock status. Conversely a decrease in depletion is linked to
a higher value for SB/SB0 and an improvement in stock status.

• SB/SBMSY is the ratio of the spawning biomass for an index year or time-period to the
spawning biomass predicted to result in Maximum Sustainable Yield (MSY).

• F/FMSY is the fishing mortality over the assessed stock for an index year or time-
period across all fleets divided by the fishing mortality predicted to result in Maximum
Sustainable Yield (MSY). A value of F/FMSY in excess of 1 means that the stock is fished
at a rate beyond that expected to maximize stock productivity.

• F/Flim,AS and F/Fcrash,AS: The PAW requested the presentation of alternative reference
points, if possible, and Zhou et al. (2018) evaluated candidates reference points for
elasmobranchs for consideration by SC in 2018. We are thus including here a version
of two of the F-based reference points they considered, F/Flim and F/Fcrash, and note
that another reference point they presented, F/Fmsm, can be considered equivalent to
F/FMSY in the context of an age-structured model. F/Flim is the fishing mortality
that leads to a biomass decline to 0.5 of BMSY; F/Fcrash is the minimum unsustainable
instantaneous fishing mortality rate that could lead to population extinction in the long-
term (Zhou et al. 2011). A value of F/Fcrash in excess of one implies that the population
will go extinct should that rate be maintained on the long-term. Flim and Fcrash can
be derived directly from Rmax, the maximum theoretical net productivity rate for a
stock at a small size. Rmax can be estimated from life-history parameters, including
von Bertalanffy growth rates, age-at-maturity, maximum age, sex ratio, liĴer size and
breeding interval. Alternatively, in an age-structured stock assessment model, Flim and
Fcrash can be obtained from yield simulations, inwhich caseFlim is the value ofF leading
to biomass declining to 0.5SBMSY, and Fcrash is the value of F at which yield becomes
0 (for values of F greater than FMSY )2. This is the approach we took here. We also
used spawning biomass and not total biomass to determine Flim, to match with other
spawning biomass-based reference points used by the SC. Because we are calculating
these reference points from an age-structured model instead of the surplus production
framework where they were initially defined, we refer to them as Flim,AS and Fcrash,AS.

3. RESULTS

3.1 Developments from the last assessment

The following changes were made from the Rice and Harley (2012) assessment:

• The Stock Synthesis executable was updated from 3.21 to the latest version (full version
2Note that in this case there could technically still be individuals remaining in the population if therewere length

where individuals were not selected by any fleet. In this assessment that is not the case for any length bins.
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number: 3.30.08.03);

• The age at first maturity was shiĞed down from 6 to 4 based on length at M50=175cm
specified in the reference case model, corresponding to an age of 4.5 in the Seki growth
curve used;

• The historical catch data were updated with the new reconstructions, extending the
model from 2009 to 2016;

• The CPUE time series for the longline bycatch fleet was updated;

• The length-composition data for all fleets were updated, including a revision of the range
of length bins from 55 cm to 325 cm and an increase of bin width to 5 cm;

• Optimal selectivity shapes were re-defined and fixed at new values;

• The likelihood weight of the purse seine unassociated fleet was reduced to 0.1 compared
to default of 1 to reflect the sparsity of length records for this fleet;

• Equilibrium catches were set to the average for 1995-1999 for each fleet, and initial F was
redistributed to match the distribution of equilibrium catches between fleets;

• The standard error on the CPUEwas constrained to a constant value of 0.15 across years;

• A new growth and fecundity profile was assigned to the population, including updated
growth curve parameters, a minimummaturity age of 8, an increase in the length at 50%
maturity, and a decrease in the number of age-classes from 36 to 25.

The stepwise impact of these changes on spawning biomass and spawning biomass depletion
trajectories are shown in Figure 20. We were able to exactly reproduce the 2012 depletion
trajectory with the new executable. Lowering the age at first maturity reduced the initial
depletion in spawning biomass, and increased the scaling of the initial spawning biomass.
Updating the historical catch time series had an important impact on the depletion trajectory,
increasing SB/SB0 over the full time series (except for the first year when it is constrained
by other assumptions), as well as scaling up the spawning biomass by more than half. This
resulted from the combination of the same level of initial F with higher equilibrium catches
from the new catch reconstruction. The newCPUE time series for the longline bycatch fleet also
improved the history of stock status, with stock status predicted to improve slightly froma 2013
low and final depletion levels at ∼5% of SB0 and concurrent higher levels of final spawning
biomass. Updating the composition data did not impact the spawning biomass or the depletion
trajectory but did increase the initial depletion by a small amount.

The subsequent steps of changing the shape for the selectivities, reducing the likelihoodweight
of the poorly-sampled unassociated purse seine fleet and re-distributing the initial F and
equilibrium catches hadminimal effects on spawning biomass or spawning biomass depletion
over time. Constraining the fit to the CPUE by fixing the standard error to 0.15 increased
both initial and final levels of depletion by a small amount, with a final value predicted to
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be at ∼4.5% of SB0. Finally, the new growth and fecundity profile introduced a number of
simultaneous changes which shiĞed the productivity profile of the population from that used
byRice andHarley (2012) towards a less productive one. Under this newgrowth and fecundity
profile, the spawning biomass was scaled down by more than half. The initial depletion was
more pronounced (∼0.3 from0.43 in the previous step), and the spawning biomass tended to be
more depleted throughout the assessment span. This new productivity profile in conjunction
with the previous changes described here formed our diagnostic case, with predicted final
depletion levels to be at 3.1% of SB0 for the spawning biomass.

3.2 Diagnostic case

The diagnostic case for the assessment is the model with the best overall diagnostics and an
informative likelihood profile, that also made the most reasonable assumptions about biology
and fleet seĴings based on current knowledge about oceanic whitetip shark and the fisheries
that catch this species. We used growth and fecundity parameters from the Joung et al. (2016)
study as they resulted in the best fit to the length data, sampled individuals during the time
span of the assessment, and its predictions also overlapped with that of another recent growth
study by D’Alberto et al. (2017), also in theWCPO (Figure 1). Other key parameters are shown
in Table 4.

The CV for the CPUE was constrained to a value of 0.15 over the whole time-period. This
resulted in a moderately good fit to the observed CPUE (Figure 21), with the earlier, more
variable period being fit well on average but the more recent increase in CPUE from 2012
onwards being fit at the lower end of the error bounds. The tight constraint on the SRR curve
implies that there is relatively liĴle flexibility in the model to adjust recruitments to fit year-to-
year variations in CPUE.

An asymptotic selectivity was used for the bycatch longline fleet, with 50% selectivity reached
at about 150 cm and maximum selectivity at 200 cm. For the target longline fleet, a dome-
shaped selectivity was used with maximum selectivity around 190 cm, declining to > 0.10

selectivity past 250 cm and to zero for the largest length. For the associated purse seine fleet, we
used a dome-shaped selectivity peaking at about 140 cm, with ∼ 0.1 selectivity for the smaller
lengths. Finally, for the unassociated purse seine fleet we also used a dome-shape selectivity
but with a flaĴer dome with full selectivity between lengths 160 cm and 240 cm, starting at ∼
0.1 for the smaller lengths and declining to > 0.10 selectivity past 250 cm. These are shown in
Figure 18 along with the selectivities used under the alternative growth and fecundity profile.

The fit to the catch-at-length data was very good for all fleets when observations were
aggregated over time (Figure 22) but less consistent for year-to-year predictions (Figure 23).
This was expected given the inter-annual variability in the average value for the length
observations, paired with time-invariant selectivity which assumes constant selectivity for all
fleets over time.

The likelihood profile over the unfished recruitment (R0) shows that the model fit is largely
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driven by assumptions about recruitment, and that there is a clear minimum matching that
estimated under the diagnostic case (Figure 24). This comes from the tight constraint on the
stock-recruitment relationship implied by seĴing σR to a low value and the fixed steepness.
Despite its much lower influence, the likelihood profile for the CPUE also has a minimum
matching that of the recruitment component. However the leĞ-hand limb of the profile does
not showmuch contrast, indicating that the CPUE ismore useful on its own in seĴing an upper
bound for unfished recruitment, but is relatively uninformative in terms of the lower bound.
The individual fleet signals for the catch-at-length components show a conflict between the
longline by-catch vs. the longline target and the purse seine associated fleets. Fit to the longline
by-catch data improves with a lower unfished recruitment, while fit for the longline target and
the purse seine associated fleets is beĴer with a higher unfished recruitment. There is a slight
decline in mean length over recent years in the longline by-catch fleet, which could explain the
relative value in likelihood for this component. The likehood profiles for the target longline
and purse seine associated fleets are consistent with the lack of clear signal in length over the
duration of the assessment. None of the minima for these individual fleet profiles match those
of the combined components. Finally, the purse seine unassociated fleet catch-at-length data
was downweighted and it did not influence the total likelihood values.

The predicted SRR curve is shown in Figure 25 with minimal deviations from predicted
recruitments given the low value of σR assumed for the diagnostic case.

The predictions of total biomass, recruitment and spawning biomass resulting from the
diagnostic case are shown in Figure 26, including also the predictions under the alternative
growth and fecundity profile based on Seki et al. 1998. There is an overall decline in all three
quantities over the time span of the assessment, aĞer a slight increase at the beginning driven
by the increase in CPUE between 1995 to 2000. The estimates in total and spawning biomass
are scaled up under the Seki alternative growth profile. However, the number of recruits is
predicted to be slightly higher under the Joung growth profile used for the diagnostic case.
This results from the different predicted distributions of n-at-age between the two curves.

Fishing mortality is highest for the longline by-catch fleet (Figure 27) over the time series. It
increases from 1995 levels to about 0.25 over 2000-2010, with high annual variations. It peaks
sharply in 2012 and declines thereaĞer given the diagnostic case catch scenario accounts for
discard mortality (scenario ‘MedianDM25’). Fishing mortality for all other fleets is predicted
to be negligible in comparison to that by the longline by-catch fleet.

Maximum Sustainable Yield (MSY) is predicted to be ∼3000mt for the diagnostic case and
∼4900mt under the alternative growth and fecundity profile, with FMSY relatively similar and
very low for both, at F = 0.054 and F = 0.067, respectively Figure 28. This very low FMSY

reflects the low value of steepness assumed for this stock.
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3.3 One-off sensitivities

Figure 29 shows the depletion trajectories for key one-off sensitivities from the diagnostic case.
We looked at assumptions under 4 broad categories: biological factors, impact of fishing, fleet
selectivities and weights on input data.

Under biological assumptions (Figure 29 top leĞ), the alternative growth profile and the
assumed natural mortality had the most impact on spawning biomass trajectories. Under the
Seki growth profile the initial depletion was not as important and levels of final depletion are
also slightly lower than for the diagnostic case. Increasing and lowering natural mortality
respectively lowered and increased the inital depletion, but had minimal effect on final levels.

Themost influential assumption for the impact of fishing (Figure 29 top right) was the value for
the initial fishingmortality. With a higher initial F the stockwas considered to bemore depleted
at the start of the time series, and converselywith a lower initial F the stockwas considered to be
less depleted. Alternative catch scenarios had minimal impact on overall spawning biomass
trajectories but catch scenarios accounting for discard mortality showed a small increase in
SB/SB0 from 2013 onwards whereas spawning biomass trajectories continued downwards
from 2013 levels for the other catch scenarios.

The assumed shape for the fleet selectivities (Figure 29 boĴom leĞ) had a small impact on
initial levels of depletion, with the sensitivities for model-estimated selectivities and dome-
shaped selectivity for the longline by-catch fleet both showing lower levels of initial depletion.
The sensitivity including asymptotic selectivity for the purse seine fleets resulted in a small
increase in depletion at the start of the time series only.

Finally, changing the influence of different model components on the likelihood (Figure 29
boĴom right) had minimal effect on SB/SB0, except when the influence of recruitment
assumptions was diminished by 4-fold (to 0.25) and the constraint on fiĴing CPUE increased
with a standard error of 0.1. In that instance the depletion levels were not as pronounced
from 2000 to 2008 but the difference was never more than 0.05. Final depletion levels were
unchanged. Also, using the standard error for the CPUE estimated by the CPUE statistical
model instead of constraining the standard error to improve the fit to the index resulted in a
small increase in final SB/SB0, by about 1%.

3.4 Structural uncertainty grid

The median 2016 depletion (SB/SB0) over all runs of the structural uncertainty grid was 3.7%
(95%CI: 2.1–6.1%), from an initial median depletion in 1995 of 33.5% (95%CI: 14.7–59.2%). The
trajectory is shown in Figure 30, and Figure 31 and Figure 32 show individual runs for each
axes highlighting the effect of levels within the axes, and median and inter-quartile bounds by
level, respectively. Summary distributions of SB/SB0 andF -based reference points, andKobe
plots for the final year of the assessment are shown in Figure 33 to Figure 37. Additional panel
plots show the distribution of SB/SB0 against all three F -based reference points Figure 38
to Figure 40. Note that there was a small number of runs (6) with unlikely combinations
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of levels (e.g. low steepness, high M, high catches) that did not converge or converged on
implausible estimates. These runs were excluded from graphics and from summary statistics
for the minimum and maximum values.

All axes of uncertainty had a greater effect on initial levels of depletion than on the final
estimates. The three most influential axes were the initial fishing mortality, the natural
mortality and the growth profile. Under higher levels of initial fishing mortality the stock
was assumed to start at higher levels of depletion provided catch levels were the same.
Similarly, lower levels of natural mortality implied a stock that is less productive, and so
the initial SB/SB0 is lower. That trend is maintained over the assessment’s time span.
Finally, the more productive growth profile using the Seki et al. 1998 implied higher SB/SB0

throughout the time series compared to the less productive growth profile using the Joung et
al. 2016 parameters, but there is more overlap in individual runs based on the value of other
parameters. The catch scenarios did not change the overall depletion trajectory but did impact
post-2013 rates of change: under the scenarios accounting for discardmortality there is a slight
recovery in spawning biomass starting in 2013 due to a decline in catches in the laĴer part of
the time series.

The relative impact of axes of uncertainty on reference points for the final year of the
assessment (2016) is especially visible when looking at F-based reference points (Figure 34 and
36). Under F/FMSY (Figure 34), the median and inter-quartile bounds predict the stock to be
overfished (F > FMSY ) under all axes. Unlike for the depletion trajectory, the most influential
uncertainty axis was the catch scenario and, more specifically, whether survival rates in the
discards is accounted for (i.e. DM < 100%). In that instance F/FMSY , while still being above
1, was reduced from a median value of 5.87 to a median value of 3.08 and 2.14 for the Median
catch DM scenarios assuming 43.75% and 25% total discard mortality. Steepness and natural
mortility were also influential axes but to a much lesser degree, with F/FMSY being higher
and more variable for lower steepness and lower natural mortality. Other axes which were
influential on overall population trajectories and especially the initial status of the population
had very liĴle effect on the final value for F/FMSY .

The impact of the catch scenario axis was also visible when looking at the F/Flim,AS and
F/Fcrash,AS alternative reference points (Figure 35 and 36). In that case, all runs with catch
scenarios not including for discard survivals (‘MedianDM100’ and ‘HighDM100’) predict that
F/Flim,AS and F/Fcrash,AS exceed 1, with a median value for F/Flim,AS of 3.86 and 3.96, and for
F/Fcrash,AS of 2.48 and 2.63, for theMedian andHigh catch scenarios respectively. For the catch
scenarios accounting for an intermediate amount of discard mortality (43.75% total), all runs
exceededF/Flim,AS = 1 and 77.8%and 84.0%of runs exceededF/Fcrash,AS = 1 for theMedian and
High catch scenarios. Median values for theMedian andHigh catch scenarios were F/Flim,AS =
2.02 and 2.15, andF/Fcrash,AS = 1.32 and 1.41 respectively. Finally, 83.3% and 84.2% of runswith
the optimistic catch scenarios assuming a total discard mortality of 25% exceeded F/Flim,AS =
1, and 33.3% and 45.4% of runs exceeded F/Fcrash,AS = 1 under the median and high catch
scenarios.
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The other influential axis was that of the growth profile. Under the more productive Seki
growth profile 89.1% of runs exceeded F/Flim,AS = 1 and 58.7% of runs exceeded F/Fcrash,AS =
1 with median values of 1.83 and 1.18 for these two metrics. Under the less productive Joung
growth profile 100% of runs exceeded F/Flim,AS = 1 and 87.9% of runs exceeded F/Fcrash,AS =
1 with median values of 2.55 and 1.75.

Finally, the Kobe plots highlighting SB/SBMSY vs. F/FMSY in the final year of the assessment
for each axis of the structural uncertainty grid (Figure 37) show that all of the grid runs
were located in the upper-leĞ quadrat of the plot, indicating a stock that is overfished and
undergoing underfishing. Panel plots that compare SB/SB0 to the three F -based reference
points are also included in Figure 38 to 40. These show how interactions between levels across
axes can impact the stock status, notably, model runs under the more productive Seki growth
profile combined with more optimistic catch scenarios result in lower levels of F and higher
levels of spawning biomass compared to SB0 in the final year of the assessment. Conversely,
model runs with the less productive growth profile combined with more pessimistic catch
scenarios result in higher levels of F and lower levels of spawning biomass compared to SB0.

4. DISCUSSION

This is the second stock assessment for oceanic whitetip shark in the WCPO following that
of Rice and Harley (2012), and the first since CMM2011-04 enacting a no-retention measure
for this species for WCPFC member countries became active in 2013. For the previous
assessment and that of sharks in general, biological parameters and catch histories are highly
uncertain. Strong assumptions had to bemade about the values for a number of key assessment
parameters, notably, the spawning-recruit relationship which was assumed to be strongly
linked to the number of spawners, with liĴle variability permiĴed. In addition, there was
conflict between the key input datasets of CPUE and catch-at-length compositions: the CPUE
showed a steep decline over the assessment’s duration but the catch-at-length showed no
concurrent decline in mean length that would have been indicative of a degradation of the
age structure due to overfishing. Nonetheless, a broad range of assumptions were tested
under a structural uncertainty grid and while the 1995 stock status was very sensitive to
these assumptions, more than 80% of the 648 uncertainty runs converged to a final depletion
status for the spawning biomass below 5% (100% SB/SB0 < 0.10). Even the run with the
most optimistic combination of parameters (fast growth, low catches, low initial F , high
natural mortality, high steepness, and high recruitment deviation) predicted the stock to be
overfished and undergoing overfishing (SB/SB0 = 0.059, F/FMSY = 1.09). Therefore, while
strong assumptions are made in the stock assessment model, we are confident that the final
conclusions about stock status are robust to these.

There were two key differences between the data and life-history inputs in this assessment
compared to the previous one. First, the historical catch reconstructions were updated with a
new methodology. This updated approach still relied on extrapolation from observed catch
rates in the longline and purse-seine fleets, but resulted in historical catches predicted to
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be slightly lower in the first part of the time series than for the previous analysis. We also
undertook a separate catch reconstruction based on a completely different approach (global fin
trade statistics), and therewas good concordance between the catcheswe predicted for the year
where the catch predictions for this second approach are the most reliable for oceanic whitetip
sharks (2000). This gave us confidence in our catch reconstruction model. Observed rates
between 1995 and the early 2000s are unreliable and very variable, and with a very low effort
coverage it is expected that catch extrapolations for this method would be highly sensitive to
the underlying statistical model.

Uncertainty about historical catches was accounted for by creating scenarios of alternative
catches directly based on the distribution of possible catches predicted by the statistical model.
For the baseline catch scenario we used the median value of catches predicted and for the
high catch scenario we used the 90th quantile of catches predicted. This differs from the 2012
approach where a multiplier of two was applied to the catch history, but accounts for the fact
that we have higher certainty in the predictions of catches in the laĴer part of the time series
due to the improved observer coverage.

Our predictions of catches for the target longline fleet were lower than for the previous
assessment. They were directly modelled from observer catch rates and effort for the
participating countries instead of making an assumption about the amount of shark-targeting
effort. Both observed catch rates and overall effort for this fleet are highly uncertain, and we
have low confidence in the quality of our catch reconstruction for this fleet based on these data.
However, we still felt it was important to aĴempt to directly model them as a first step. While
the assessment’s conclusions are robust to assumptions made for this fleet’s catch, it should be
possible to improve the quality of the data informing the historical reconstruction for this fleet
with greater collaboration with the participating countries. This fleet is thought to have halted
its activity in 2014 but still forms an important part of the catch history of oceanic whitetip
shark.

The second key difference with Rice and Harley (2012) is the assumptions made for the
life-history parameters. Two WCPO studies were recently published (Joung et al. 2016 and
D’Alberto et al. 2017) which showed different growth and fecundity profiles than what was
used for the 2012 assessment based on a study by Seki et al. (1998). Both of these new studies
predict slower growth and higher maturity-at-age for this species, implying a less productive
stock that could be more sensitive to the impacts of fishing. The new studies were based on
smaller areas than the Seki et al. (1998) study which covered a broad area across the North
Pacific, but they also sampled individuals during the core of the assessment’s time period in
contrast to Seki et al. (1998) which sampled individuals from the early 1990s. We accounted
for this uncertainty in life-history parameters by defining two growth and fecundity profiles
for the assessment and accounting for them as part of the structural uncertainty grid. While
the stock status predictions made under the more productive growth profile were predictably
more optimistic, the resulting categorization of stock status as overfished and undergoing
overfishing remained unchanged.
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This assessment accounted for post-release mortality in the predictions of historical catches
for longline fleets. To our knowledge, this is the first Pacific shark assessment to directly do
so. This additional step was essential in order to properly account for the potential impact
of CMM2011-04 on stock status. We used three scenarios of discard mortality, one of which
forms a best estimate that accounts for changing discarding rates by fleets over time and recent
PRM research. This more-likely scenario assumes a total discard mortality of 43.75% and is
bounded by a more optimistic scenario of lower discard mortality (25%) and one assuming
100% mortality on all catches, which is the de facto assumption made for historical catch
reconstructions that do not account for discard mortality. Our best estimate for PRM when
individuals are released alive was informed by PRM tagging studies for shortfin mako and
silky shark. While some experimental data has been collected as part of an oceanic whitetip
shark PRM study (Common Oceans (ABNJ) Tuna Project 2019), the results are yet to be
finalized. CommonOceans (ABNJ) Tuna Project (2019) highlighted considerable uncertainty in
the mapping of PRMs from tagging studies to unobserved fishing vessels due to the treatment
of captured sharks from the time the line is hauled to when they are released. The bounds
in survival rate used for our catch scenarios thus reflect true uncertainty in the value of this
variable for oceanic whitetip sharks, but are still deemed to be a reasonable representation of
the current state of knowledge on this topic.

Standardized catch-per-unit-effort (CPUE) from the longline bycatch fleet was a key input to
the assessment. The standardized index pointed to a general decline in abundance over time
from 1999, with highly variable and imprecise estimates for the earlier part of the time series
and a slight increase in abundance from 2013 onwards. CPUE indices in both the earlier and
the laĴer period of the assessment are less reliable than for other years. For the early period
the observer coverage for the longline fleet was extremely low and very variable among years.
This resulted in wide uncertainty bounds estimated for the CPUE during that period, and
high year-to-year variations. We ended up constraining the standard error for this time period
but also showed that assessment conclusions were robust to the assumed uncertainty for this
data input. CPUE as an index of abundance is also less reliable in the later period following
CMM2011-04 and CMM-2014-05. In the case of CMM2011-04, the no-retentionmeasuremeans
that many sharks are being cut-off from the line without being brought on-board. There have
been anecdotal reports that these cut-off events are not always recorded by observers, and that
the way unobserved cut-off events are recorded is not consistent between observer programs
or in the years since CMM2011-04 started. This implies that a higher number of sharks might
be caught than recorded, whichmeans that any increase in abundance resulting fromdeclining
fishing mortality post-CMM2011-04 might not be captured accurately by the CPUE index. In
parallel, CMM2014-05 banning the simultaneous use of shark lines and wire traces should
reduce catch rates for sharks, including oceanic whitetip shark. However, it is hard to account
for this in the CPUE standardizationmodel given these gear variables were recorded unevenly
between observer programs and across time.

Catch-at-length data are another key input to the stock assessment as trends in the caught
lengths could be indicative of fishing mortality on the overall stock, as well as growth paĴerns
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over time. For this assessment most of the length records came from the longline fleets. There
was no clear signal in mean length across time, except in the case of the longline bycatch
fleet that showed some decline in mean length from 2012 onwards. This might be linked to
CMM2011-04 as length is only recorded for individuals brought on-board for most observer
programs (except for the US observer programs), and large individuals are more likely to be
cut-free directly from the line instead of being brought on-board. It is possible to approximate
length from individuals while they are in the water but the precision is much lower, and
such low-precision measurements are typically excluded from WCPFC stock assessments.
However, the number of length measurements has markedly declined over the recent period
of the assessment due to individuals not being brought on-board. Because of this we are
loosing a potentially important index of stock status to inform stock assessments. This is a
serious concern as there are already relatively few length measurements for oceanic whitetip
sharks over the time-span of the assessment, which challenges the inclusion of this dataset
as an informative input to the population dynamics model. There are other features of the
length composition data which complicated its interpretation. Notably, there was uneven
sampling between fleets over the region covered by the assessment, which means that it may
not be truly representative of the catch-at-length for all fleets over time. In addition, there
was a distinct north-south increase in mean length that we were unable to standardize for.
This spatial trend in length could be due to biology or to sampling, and might confound the
identification of a clear time signal from the catch-at-length data. Consequently the catch-
at-length data were downweighted in the assessment but this data input could potentially
become more informative with further analyses, at least for the longline fleets that hold the
most records. Also, a high proportion of longline records had to be discarded as no length-
length conversion existed for the measure recorded (lower jaw to fork in tail).

Finally, following the recommendations from PAW (Pilling & Brouwer 2019), we included
two alternative reference points in our summaries of stock status, F/Flim,AS and F/Fcrash,AS.
These were presented by Zhou et al. (2018) in their review of candidate reference points for
WCPFC sharks last year and can be related to Rmax or FMSY . They were initially developed
in a surplus production framework but we applied them here to an age-structured model by
defining F/Flim,AS as a function of spawning biomass and F/Fcrash,AS from yield simulations.

4.1 Main stock assessment conclusions

Stock statuswas obtained by summarizing reference points over 648model runs accounting for
assumptions about life-history parameters and impact of fishing underpinning the assessment.
We found the stock to be overfished and undergoing overfishing based on SB/SBMSY

and F/FMSY reference points and assuming equal weightings for grid levels. This overall
conclusion is the same as that from the previous assessment, despite a wider range of
uncertainties being considered, notably in the growth and fecundity parameters.

We found that fishing-based reference points were improved in the period since CMM2011-
04 became active, which covers the last 4 years of the assessment’s time-span (2013–2016).
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Notably, F/FMSY is predicted to have declined by more than half from 6.12 to 2.67 (median)
for the last year of the assessment when the impact of the conservation measure on survival
is accounted for under 25% and 43.75% discard mortality scenarios. This is based on the
assumption that observed discarding rates and the range of discard mortality parameters
measured on observed trips are representative of those occuring on unobserved vessels. Two
alternative reference points, F/Flim,AS and F/Fcrash,AS, follow similar relative trends to that for
F/FMSY following the adoption of the measure. However, F/Fcrash,AS still remains above 1
(median: 1.1, 95%CI: 0.52-2.48), even when accounting only for scenarios that assume discard
mortality < 100%.

All catch scenarios accounting for DM < 100% showed a very slight increase in spawning
biomass since 2013, but final levels of depletion remain very low over all grid runs (median:
0.0367, 95%CI: 0.021 to 0.061). Given the assessment assumes oceanic whitetip sharks to
become mature aĞer 4 or 8 years, it would be expected for stock recovery to be slow in the
period following CMM2011-04 while the spawning biomass rebuilds. Despite the relative
improvements in F-based reference points since 2013, the median value of F/Fcrash,AS over
all grid runs for 2016 remains above 1 (1.41), indicating that the population should go extinct
in the long-term under this level of fishing mortality.

4.2 Recommendations

This assessment estimates that CMM2011-04 may have had a positive impact on stock status
by decreasing fishing mortality. However, there are two key sources of data informing stock
assessments that are compromised by observer practices not having adapted to the post-
CMM2011-04 period:

• Longline observer programs need to ensure there are clear and consistent directives
about how unobserved discarded-cut-free (DCF) individuals are to be recorded. Not
recording DCF events can seriously compromise the quality of the catch rates time
series used both as an index of abundance and to reconstruct historical catches for shark
assessments. We recommend that all DCF events are recorded even if unobserved,
and that in the instance where the species could not be identified, that the species be
recorded at the highest taxonomical level possible, even if in the absence of information
that level is ‘shark’ or ‘unidentified’.

• We recommend that approximate length measurements should be recorded even if
individuals are not brought on-deck, with an estimate of precision. This is already
done by some observer programs operating in the WCPO, and would ensure that the
time series of length measurements is not compromised even if the precision of length
estimates is lower.

• We recommend that alternative analytical methods incorporating coarser bin lengths
for part of the time series be investigated.
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In addition, we make the following recommendations about additional research into the
biology of oceanic whitetip shark and of data inputs that impact its assessment:

• The predictions of recent and latest stock status were highly sensitive to assumptions
made about discard and post-release mortality for oceanic whitetip shark. In particular,
the final status in relation to F -based reference points was more sensitive to assumptions
about discard mortality than the scaling of the overall catch. We recommend that
ongoing and new studies on this topic for this species be prioritized and projections
of current stock status be updated with estimates of PRM specific to oceanic whitetip
shark in the WCPO.

• We recommend that observers record the length of the trailing branchline when
individuals are cut-free, as current evidence indicates this variable might be
influential in PRM rates.

• We recommend that spatial trends in shark length for the longline dataset be analysed
in a dedicated study in order to determine the likely cause for a north-south increase
in the mean length observed, and that approaches to standardize the length dataset be
investigated accordingly. Thismight enable the detection of a temporal signal in lengths
which could inform the assessment model.

• There is a single fork length to total length conversion for the oceanic whitetip shark
in the WCPO, based on a fork length measurement starting from the upper jaw (UFL).
Comprehensive length-length conversionswould facilitate the inclusion of data collected
elsewhere in a different length format. We recommend that additional length-length
conversions be obtained, and, more specifically, a length-length conversion from total
length (TL) to fork length measurements starting from the lower jaw (LFL). A TL-
to-LFL conversion would enable the addition of more observed lengths from SPC-held
records.

• Historical catches for the target fleet were poorly estimated in the current assessment
and previous iterations reconstructing catches for oceanic whitetip sharks. It is unlikely
that the data present in SPC’s observer records is adequate on its own to provide
informative estimates. We recommend that a direct collaborationwith countries having
participated in the shark target fleet be undertaken to either produce an historical time
series of targeted catch, or reliable anchor points that can be used to scale catches
reconstructed from observer longline datasets.

• Growth studies in the last 20 years have highlighted considerable uncertainty in the
growth and fecundity parameters for oceanic whitetip sharks. It is unclear if the
variability in estimated parameters is linked tomethodology, or the region or time period
sampled. Traditional growth and fecundity studies usually imply destructive sampling
as vertebrae and gonads are required for aging and to assess maturity. While CMM2011-
04 allows for scientific sampling, traditional destructive sampling might not be optimal
given the current state of the population. However, clasper condition can be assessed
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visually formales, and newnon-lethalmethods are being developed to assessmaturity in
females by looking for reproductive hormones in blood samples. We recommend that SC
investigates non-lethal approaches to collect growth and maturity samples for sharks
and oceanic whitetip shark in particular. This would allow to improve knowledge
about uncertain life-history parameters used to inform stock assessments even when no-
retention measures are in place.

• This assessment included the alternative reference points F/Flim,AS and F/Fcrash,AS,
which are related to F/FMSY , and can be derived from a stock assessment or a risk
assessment. We invite SC to note the alternative reference points F/Flim,AS and
F/Fcrash,AS included in this assessment.
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6. TABLES

Table 1: Key fecundity and maturity parameters from recent studies of oceanic whitetip shark in the
PacificOcean(TL, total length).

Parameter Value Source

Growth (VB) k = 0.103cm, L0 = 82.9cm, L∞ = 341.7cm Seki et al. (1998)
k = 0.085, L0 = 64, L∞ = 309.4 Joung et al. (2016)

k = 0.045, L0 = 99cm, L∞ = 342.5cm D’Alberto et al. (2017)

LiĴer size 1–14 (mean: 6.2, n = 97) Seki et al. (1998)
10–11 (n = 2) Joung et al. (2016)

– D’Alberto et al. (2017)

Birth size 55–77 cm (TL) Seki et al. (1998)
64 cm Joung et al. (2016)

Unobserved (99 cm TL modelled) D’Alberto et al. (2017)

Maturity (TL) Males: 167–195 cm; females: 175–189 cm Seki et al. (1998)
Males: 194.4 cm; females: 193.4 cm Joung et al. (2016)
Males: 193 cm; females: 224 cm D’Alberto et al. (2017)
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Table 2: Model covariates of operational fishing features likely to influence catch rates of oceanic
whitetip shark and environmental variables that may represent habitat of this species (LBEST and
SBEST are databases of the SPC for longline and purse-seine fisheries, respectively).

Covariate Description

Year Year when the fishing set occurred, treated as categorical .
Flag Country-assignation for the vessel performing the fishing set.
Programme Country observer programme for fisheries observer observing the

fishing sets.
HBF Hooks-between-floats for the longline fishing set.
SetType Set category for the purse-seine fishing set: anchored FADs (fishing

aggregation devices), driĞing FADS, whales, logs or floating objects,
baited and unbaited free schools.

HBF.cat Hooks-between-floats of the fishing set assigned to a categorical
variable: shallow for ≤10 HBF, deep for >10 HBF.

Cluster Predicted targeting strategy for longline fishing set based on k-means
clustering of the proportion in the total catch in number of albacore,
bigeye, yellowfin and bluefin tuna, swordfish and other billfish. Cluster
composition was predicted based on LBEST records and assuming 5
centres, resulting in a categorical variable with values from 1 to 5.
Longline observed set targeting strategywas predicted according to the
LBEST classification.

SST Sea surface temperature aggregated at 5-degree scale for LBEST and 1-
degree scale for SBEST, obtained from NOAA (https://www.esrl.noaa.
gov/psd/data/gridded/data.noaa.oisst.v2.html).

Chl-a Sea surface chlorophyll-a concentration aggregated at 5-degree scale for
LBEST and 1-degree scale for SBEST (https://coastwatch.pfeg.noaa.gov/
erddap/griddap/erdMH1chlamday).

Bathymetry Depth of the sea floor at the location where the fishing set occurred,
aggregated at 5-degree scale for LBEST and 1-degree scale for SBEST
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/srtm15plus).

Dist2Coast Distance of the set to the nearest coastline, aggregated at 5-degree scale
for LBEST and 1-degree scale for SBEST.
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Table 3: Description of the 6 catch scenarios used in the stock assessment. The scenario used for
the diagnostic case is highlighted with a ⋆. The total mortality is the cumulativemortality assumed for
individuals from the time they are hooked to after they are released back to thewater.

Catch scenario Catch levels Discard and post-release-mortality Total mortality

MedianDM100 Median 100%mortality on all catches, inde-
pendently of discard status

100%

MedianDM44 Median 25% mortality on discards and 25%
mortality on individuals released
alive

43.75%

MedianDM25 (⋆) Median 25% mortality on discards (assum-
ing 0% mortality of individuals re-
leased alive)

25%

HighDM100 90th quantile 100%mortality on all catches, inde-
pendently of discard status

100%

HighDM44 90th quantile 25% mortality on discards and 25%
mortality on individuals released
alive

43.75%

HighDM25 90th quantile 25% mortality on discards (assum-
ing 0% mortality of individuals re-
leased alive)

25%

Table 4: Description of the axes for the structural uncertainty grid, and assigned weight by level in the
final resampling of stock statusmetrics. Settings used under the diagnostic case are highlightedwith a
star.

Axis Description Weight

Growth and fecundity Joung et al. (2016)(⋆), Seki et al.
(1998) (Figure 18)

0.5, 0.5

Catch MedianDM100, MedianDM44,
MedianDM25 (⋆), HighDM100,
HighDM44, HighDM25

0.1, 0.25, 0.15, 0.1,
0.25, 0.15

Initial F 0.1, 0.15 (⋆), 0.2 0.25, 0.5, 0.25
Steepness 0.34, 0.41 (⋆), 0.49 0.25, 0.5, 0.25
Natural mortality 0.1, 0.18 (⋆), 0.26 0.35, 0.5, 0.15
Recruitment deviation (σR) 0.1 (⋆), 0.2 0.5, 0.5
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Table 5: Description of the symbols used in the yield and stock status analyses. In this assessment,
‘recent’ is the average of themetric over the period 2013–2015, and ‘latest’ is 2016.

Symbol Description

Clatest Catch in the last year of the assessment (2016)
Crecent Catch in a recent period of the assessment (2013–2015)
MSY Equilibrium yield at FMSY

SB0 Equilibrium unfished spawning biomass
SBMSY Spawning biomass that will produce MSY

SBlatest Spawning biomass in the last year of the assessment (2016)
SBrecent Spawning biomass in a recent period of the assessment (2013–2015)

SBlatest/SBF=0 Spawning biomass in the latest time period (2016) relative to the equilibrium
unfished spawning biomass

SBrecent/SB0 Spawning biomass in the recent time period (2013–2015) relative to the
equilibrium unfished spawning biomass

SBlatest/SBMSY Spawning biomass in the latest time period (2016) relative to that which will
produce the maximum sustainable yield (MSY)

SBrecent/SBMSY Spawning biomass in the recent time period (2013–2015) relative to that which
will produce the maximum sustainable yield (MSY)

FMSY Fishing mortality producing the maximum sustainable yield (MSY)
Flim,AS Fishing mortality resulting in 0.5 of SBMSY

Fcrash,AS Fishing mortality resulting in population extinction when sustained on the
long-term

Flatest Average fishing mortality-at-age for the last year of the assessment (2016)
Frecent Average fishing mortality-at-age for a recent period (2013–2015)

Frecent/FMSY Average fishing mortality-at-age for a recent period (2013–2015) relative to
FMSY

Flatest/FMSY Latest fishing mortality (2016) compared to that producing maximum
sustainable yield (MSY)

Frecent/FMSY Recent fishing mortality (2013–2015) compared to that producing maximum
sustainable yield (MSY)

Flatest/Flim,AS Latest fishing mortality (2016) compared to that resulting in 0.5 of SBMSY

Frecent/Flim,AS Recent fishing mortality (2013–2015) compared to that resulting in 0.5 of
SBMSY

Flatest/Fcrash,AS Latest fishing mortality (2016) compared to that resulting in population
extinction

Frecent/Fcrash,AS Recent fishing mortality (2013–2015) compared to that resulting in population
extinction
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Table 6: Summary of reference points over the 648models in the structural uncertainty grid

Mean Median Min 10% 90% Max

Clatest 2585 2156 681 956 5058 9233
Crecent 3087 2627 893 1216 5639 10348
MSY 6755 5790 1774 2808 11668 19122
SB0 9641 7880 1510 3228 19842 34572
SBMSY 4038 3245 523 1157 8398 15593
SBlatest 367 298 43 86 779 1217
SBrecent 387 310 36 93 789 1616
SBlatest/SB0 0.04 0.04 0.02 0.03 0.05 0.07
SBrecent/SB0 0.04 0.04 0.02 0.03 0.05 0.08
SBlatest/SBMSY 0.09 0.09 0.05 0.06 0.13 0.16
SBrecent/SBMSY 0.10 0.09 0.05 0.07 0.13 0.17
FMSY 0.060 0.057 0.026 0.031 0.091 0.116
Flim,AS 0.094 0.096 0.041 0.050 0.144 0.183
Fcrash,AS 0.145 0.140 0.060 0.076 0.238 0.290
Flatest 0.216 0.177 0.096 0.115 0.362 0.473
Frecent 0.229 0.215 0.136 0.164 0.316 0.395
Flatest/FMSY 4.03 3.35 1.09 1.82 7.18 12.07
Frecent/FMSY 4.24 3.92 1.81 2.57 6.27 9.88
Flatest/Flim,AS 2.57 2.14 0.69 1.16 4.58 7.73
Frecent/Flim,AS 2.70 2.51 1.15 1.62 4.07 6.33
Flatest/Fcrash,AS 1.69 1.41 0.44 0.73 2.95 5.26
Frecent/Fcrash,AS 1.78 1.66 0.72 1.04 2.87 4.31
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Table 7: Summary of reference points over the 108models in the structural uncertainty grid using the
median catch scenario and assuming 100% total discardmortality.

Mean Median Min 10% 90% Max

Clatest 2497 2323 1736 1838 3416 4092
Crecent 2645 2502 1760 1883 3639 4412
MSY 4459 4299 1903 2545 6901 8922
SB0 6373 5378 1609 2086 11888 16128
SBMSY 2670 2289 558 831 5038 7274
SBlatest 232 219 43 64 449 575
SBrecent 277 253 51 76 519 722
SBlatest/SB0 0.04 0.03 0.02 0.02 0.05 0.06
SBrecent/SB0 0.04 0.04 0.02 0.03 0.06 0.07
SBlatest/SBMSY 0.09 0.08 0.05 0.06 0.12 0.14
SBrecent/SBMSY 0.10 0.10 0.06 0.08 0.14 0.16
FMSY 0.060 0.054 0.026 0.031 0.091 0.116
Flim,AS 0.094 0.083 0.041 0.050 0.144 0.183
Fcrash,AS 0.145 0.126 0.060 0.076 0.238 0.290
Flatest 0.332 0.326 0.258 0.282 0.393 0.447
Frecent 0.287 0.285 0.219 0.242 0.337 0.371
Flatest/FMSY 6.22 5.87 2.97 3.91 8.56 11.21
Frecent/FMSY 5.32 5.10 2.94 3.59 7.20 9.30
Flatest/Flim,AS 3.96 3.86 1.88 2.40 5.44 7.18
Frecent/Flim,AS 3.39 3.21 1.86 2.23 4.56 5.96
Flatest/Fcrash,AS 2.61 2.48 1.19 1.52 3.68 4.89
Frecent/Fcrash,AS 2.23 2.15 1.17 1.39 3.13 4.06
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Table 8: Summary of reference points over the 108models in the structural uncertainty grid using the
median catch scenario and assuming 43.75% total discardmortality.

Mean Median Min 10% 90% Max

Clatest 1341 1253 955 1003 1823 2149
Crecent 1637 1551 1105 1173 2245 2706
MSY 4238 4068 1803 2422 6572 8505
SB0 6039 5088 1532 1976 11253 15279
SBMSY 2529 2154 531 793 4813 6891
SBlatest 234 223 45 67 447 561
SBrecent 227 208 39 61 430 596
SBlatest/SB0 0.04 0.04 0.02 0.03 0.06 0.07
SBrecent/SB0 0.04 0.04 0.02 0.02 0.05 0.06
SBlatest/SBMSY 0.10 0.09 0.05 0.07 0.13 0.15
SBrecent/SBMSY 0.09 0.09 0.05 0.07 0.12 0.14
FMSY 0.060 0.056 0.026 0.031 0.091 0.116
Flim,AS 0.094 0.089 0.041 0.050 0.145 0.183
Fcrash,AS 0.145 0.133 0.060 0.076 0.238 0.290
Flatest 0.175 0.172 0.138 0.150 0.207 0.235
Frecent 0.208 0.206 0.160 0.175 0.244 0.271
Flatest/FMSY 3.26 3.08 1.58 2.07 4.49 5.85
Frecent/FMSY 3.83 3.69 2.14 2.61 5.21 6.70
Flatest/Flim,AS 2.08 2.02 1.00 1.27 2.84 3.75
Frecent/Flim,AS 2.44 2.31 1.36 1.62 3.29 4.29
Flatest/Fcrash,AS 1.37 1.33 0.63 0.80 1.95 2.55
Frecent/Fcrash,AS 1.61 1.56 0.85 1.02 2.24 2.92
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Table 9: Summary of reference points over the 108models in the structural uncertainty grid using the
median catch scenario and assuming 25% total discardmortality.

Mean Median Min 10% 90% Max

Clatest 942 878 681 713 1270 1487
Crecent 1310 1236 893 945 1783 2146
MSY 4171 4005 1774 2385 6466 8370
SB0 5942 5004 1510 1942 11054 15006
SBMSY 2489 2119 523 781 4743 6768
SBlatest 238 227 47 68 451 562
SBrecent 212 195 36 57 404 558
SBlatest/SB0 0.04 0.04 0.02 0.03 0.06 0.07
SBrecent/SB0 0.04 0.03 0.02 0.02 0.05 0.06
SBlatest/SBMSY 0.10 0.09 0.05 0.07 0.14 0.16
SBrecent/SBMSY 0.09 0.08 0.05 0.06 0.11 0.14
FMSY 0.060 0.056 0.026 0.031 0.091 0.116
Flim,AS 0.094 0.089 0.041 0.050 0.145 0.183
Fcrash,AS 0.145 0.133 0.060 0.076 0.238 0.290
Flatest 0.121 0.119 0.096 0.104 0.143 0.162
Frecent 0.176 0.174 0.136 0.148 0.207 0.229
Flatest/FMSY 2.26 2.14 1.09 1.42 3.11 4.06
Frecent/FMSY 3.25 3.13 1.81 2.21 4.42 5.69
Flatest/Flim,AS 1.44 1.40 0.69 0.88 1.97 2.60
Frecent/Flim,AS 2.07 1.95 1.15 1.37 2.79 3.64
Flatest/Fcrash,AS 0.95 0.92 0.44 0.56 1.36 1.77
Frecent/Fcrash,AS 1.36 1.32 0.72 0.86 1.90 2.48
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Table 10: Summary of reference points over the 108 models in the structural uncertainty grid using
the high catch scenario and assuming 100% total discardmortality.

Mean Median Min 10% 90% Max

Clatest 5633 5209 3860 4107 7680 9233
Crecent 6229 5855 4122 4420 8545 10348
MSY 9658 9312 4090 5690 14796 19122
SB0 13789 11686 3454 4476 25469 34572
SBMSY 5776 4950 1197 1784 10802 15593
SBlatest 494 462 93 138 946 1217
SBrecent 632 572 120 176 1168 1616
SBlatest/SB0 0.04 0.03 0.02 0.02 0.05 0.06
SBrecent/SB0 0.05 0.05 0.02 0.03 0.06 0.08
SBlatest/SBMSY 0.09 0.08 0.05 0.06 0.12 0.13
SBrecent/SBMSY 0.11 0.11 0.06 0.08 0.14 0.17
FMSY 0.060 0.057 0.026 0.031 0.091 0.116
Flim,AS 0.095 0.096 0.041 0.050 0.144 0.182
Fcrash,AS 0.146 0.140 0.060 0.076 0.238 0.290
Flatest 0.354 0.346 0.275 0.300 0.417 0.473
Frecent 0.305 0.302 0.232 0.257 0.360 0.395
Flatest/FMSY 6.60 6.22 3.16 4.15 9.17 12.07
Frecent/FMSY 5.63 5.34 3.14 3.83 7.65 9.88
Flatest/Flim,AS 4.20 3.96 2.00 2.55 5.85 7.73
Frecent/Flim,AS 3.58 3.41 1.99 2.38 4.84 6.33
Flatest/Fcrash,AS 2.76 2.63 1.26 1.62 3.92 5.26
Frecent/Fcrash,AS 2.36 2.26 1.25 1.48 3.33 4.31
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Table 11: Summary of reference points over the 108 models in the structural uncertainty grid using
the high catch scenario and assuming 43.75% total discardmortality.

Mean Median Min 10% 90% Max

Clatest 3037 2821 2136 2252 4112 4843
Crecent 3788 3571 2549 2705 5184 6224
MSY 9131 8744 3872 5315 14080 18225
SB0 13072 11070 3289 4231 24102 32715
SBMSY 5478 4725 1140 1699 10325 14756
SBlatest 501 478 100 147 944 1188
SBrecent 510 469 92 140 956 1310
SBlatest/SB0 0.04 0.04 0.02 0.03 0.05 0.06
SBrecent/SB0 0.04 0.04 0.02 0.03 0.05 0.06
SBlatest/SBMSY 0.09 0.09 0.05 0.07 0.13 0.14
SBrecent/SBMSY 0.09 0.09 0.05 0.07 0.12 0.15
FMSY 0.060 0.056 0.026 0.031 0.090 0.116
Flim,AS 0.094 0.089 0.041 0.050 0.140 0.182
Fcrash,AS 0.144 0.133 0.060 0.076 0.223 0.290
Flatest 0.186 0.183 0.148 0.161 0.219 0.248
Frecent 0.217 0.215 0.167 0.183 0.255 0.284
Flatest/FMSY 3.50 3.29 1.68 2.23 4.85 6.27
Frecent/FMSY 4.04 3.88 2.25 2.77 5.47 7.03
Flatest/Flim,AS 2.23 2.15 1.07 1.36 3.07 4.02
Frecent/Flim,AS 2.57 2.43 1.43 1.72 3.45 4.50
Flatest/Fcrash,AS 1.47 1.41 0.67 0.87 2.09 2.73
Frecent/Fcrash,AS 1.69 1.64 0.90 1.08 2.36 3.07
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Table 12: Summary of reference points over the 108 models in the structural uncertainty grid using
the high catch scenario and assuming 25% total discardmortality.

Mean Median Min 10% 90% Max

Clatest 2125 1971 1532 1609 2850 3336
Crecent 2983 2796 2046 2166 4053 4862
MSY 8947 8603 3811 5128 13846 17932
SB0 12738 10723 3242 4175 23636 32112
SBMSY 5335 4540 1124 1679 10153 14484
SBlatest 507 487 104 152 955 1192
SBrecent 471 430 85 131 889 1220
SBlatest/SB0 0.04 0.04 0.02 0.03 0.06 0.07
SBrecent/SB0 0.04 0.04 0.02 0.02 0.05 0.06
SBlatest/SBMSY 0.10 0.09 0.05 0.07 0.14 0.15
SBrecent/SBMSY 0.09 0.09 0.05 0.07 0.12 0.14
FMSY 0.060 0.056 0.026 0.031 0.091 0.116
Flim,AS 0.094 0.089 0.041 0.050 0.144 0.182
Fcrash,AS 0.145 0.133 0.060 0.076 0.238 0.290
Flatest 0.129 0.127 0.103 0.112 0.152 0.172
Frecent 0.183 0.181 0.139 0.154 0.215 0.237
Flatest/FMSY 2.42 2.28 1.16 1.51 3.36 4.40
Frecent/FMSY 3.37 3.24 1.88 2.29 4.59 5.92
Flatest/Flim,AS 1.54 1.49 0.73 0.93 2.13 2.82
Frecent/Flim,AS 2.15 2.03 1.19 1.43 2.91 3.79
Flatest/Fcrash,AS 1.02 0.98 0.46 0.59 1.46 1.92
Frecent/Fcrash,AS 1.42 1.37 0.75 0.89 1.98 2.58

60 Oceanic whitetip shark assessment



7. FIGURES

Figure 1: Comparison of growth curves of oceanic whitetip shark from the threemost recent studies
in the PacificOcean. Dashed lines at ages 17, 25 and 36 indicate themaximumobserved age (Clarke
et al. 2015), themaximum age specified in the current assessment, and themaximum age specified
in the previous assessment (Rice&Harley 2012), respectively.

.
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Figure 2: Summary of effort for the key fleets catching oceanic whitetip shark in the Western
and Central Pacific Ocean assessment region. Time-series (left) and spatial distribution (right;
aggregated5-◦cell). Keyfleetswere longlinesharkbycatchor targetfleetsandpurseseinefleetsusing
fishing aggregating devices (associated) or free schools (unassociated).
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Figure3:WesternandCentralPacificFisheriesCommissionconventionarea(lightgrey), includingthe
stockassessmentarea foroceanicwhitetipshark(darkgrey),boundedbythe30◦Nand30◦Sparallels
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Figure 4: Prediction of the proportion of ‘deep’ LBEST effort over time for key longline countries in
LBESTactiveover theassessment’s region. Thered lineshowstheobservedproportionof ‘deep’effort
whenprovidedandtheblue lineshowsthepredictionaccountingforbothobservationsandtherandom
forest prediction for unobserved strata. The light and dark grey bounds show the 0.025th-0.975th

and 0.25th-0.75th uncertainty bounds for the effort classification, also accounting for effort already
providedwithHBF resolution.
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Figure 5: Median predictions of oceanic whitetip shark catch in the WCPO for the longline by-catch
fleet based on a model of longline observed catch rates applied to LBEST effort. The light, dark and
darkergreyboundsshowthe0.025th-0.975th,0.10th-0.90th and0.25th-0.75th uncertaintybounds.
Forcomparisonwithourestimates, theblue line shows themedianpredictionofhistorical catchbased
onglobalfin tradestatistics, the red lineshows thepredictionofhistorical catchpublished in(Peatman
et al. 2018), and thegreen line shows thehistorical catchesused for this fleet in the referencecase for
the 2012 assessment.
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Figure 6: Median predictions of oceanic whitetip shark catch in theWCPO for the longline target fleet
based on amodel of longline observed catch rates applied to LBEST effort. The light, dark and darker
grey bounds show the 0.025th-0.975th, 0.10th-0.90th and 0.25th-0.75th uncertainty bounds. For
comparison with our estimates, the green line shows the historical catches used for this fleet in the
reference case for the 2012 assessment.

Figure 7: Median predictions of oceanic whitetip shark catch in the WCPO for the associated and
unassociated purse-seine fleets based on a model of purse-seine observed catch rates applied to
SBEST effort. The light, dark and darker grey bounds show the 0.025th-0.975th, 0.10th-0.90th

and 0.25th-0.75th uncertainty bounds. For comparison with our estimates, the red line shows the
prediction of historical catch published in (Peatman et al. 2018) for these fleets and the green line
shows the corresponding historical catches used in the reference case for the 2012 assessment.
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Figure 8: Median predictions of oceanic whitetip shark catch in the WCPO based on global fin trade
statistics. Predictions are shown in numbers with 95% credible bounds, using three approaches to
scale the global catch to theWCPOarea.

Figure 9: Year effects, independent of flag, estimated for the proportion of individuals discarded by
year in thebinomialmodel predicting discard rates over time. Thewhite line shows themedian and the
box outlines the inter-quartile range.
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Figure 10: Randomeffects estimated for key longline observed flags in the binomial model predicting
discard rates over time. The vertical line at 0 shows the mean. Effect distributions below the mean
indicate lower discard rates (i.e. higher retention rates) compared to other flags, and conversely
distributions above themean indicate higher discard rates compared to other flags.
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Figure 11: Observed (light blue) vs. predicted (red;median) proportion of discarded individuals by
key longline LBEST flags operating in the assessment region. The light and dark grey bounds show the
0.025th-0.975th and0.25th-0.75th uncertainty bounds.
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Figure 12: Median historical catch for the longline by-catch fleet for the three discard and post-
releasemortality catch scenarios assuming 100% (darker), 43.75% and 25% (lighter) total mortality
for discarded individuals in turquoise andblue for the ‘high‘ and ‘median‘ catch scenarios, respectively.
The dotted line at 2013 highlights the start of CMM-2011-04 prohibiting the retention of oceanic
whitetip sharks for vessels fishing in theWCPFCConvention Area.

Figure 13: Mean-standardized CPUE index used in this assessment of oceanic whitetip shark. The
light and dark grey bounds show the 0.025th-0.975th and 0.25th-0.75th uncertainty bounds around
the year effects. The dashed line at 1 shows the referencemean value.
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Figure 14: Length-compositions for oceanic whitetip shark in the four fleets used in the assessment,
aggregated in 5cm bins. The sample size for each fleet is shown in the upper right. The vertical line
shows themedian length (in cm) for each fleet across all years.
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Figure 15: Annual length-compositions for oceanic whitetip shark for the four fleets used in the
assessment, aggregated in 5cmbins. Fleets are in columns and years are in rows. The sample size for
each fleet is shown in the upper right of each year-fleet panel.

72 Oceanic whitetip shark assessment



Figure 16: Mean length (total length in cm) from 1995 to 2016 for observed longline individuals
(bycatchand targetfleets)over theassessment region. Onlycellswithat least2 individualsmeasured
are shown(cells with a singlemeasured individual are in grey).
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Figure 17: Mean length (total length in cm) from 1995 to 2016 for observed longline individuals
(bycatch and target fleets) over the assessment region, split between observer program. Only cells
with at least 2 individualsmeasured are shown(cells with a singlemeasured individual are in grey)
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Figure 18: Comparison between the biological and fleet model parameters used for the two growth
profiles based on the Seki et al. 1998 and Joung et al. 2016 studies: length-at-age (top left),
maturity-at-length (top right) and selectivity by fleet (bottom). The dotted lines on the maturity-
at-length plots indicate the average length at first maturity based on the first age-at-maturity
specified for eachmodel.
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Figure19: Total catchesby fleet over timeused for thediagnostic case. These catcheswereobtained
from themedian catch scenario assuming 25%discardmortality.
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Figure20: Impact on spawningbiomassdepletionof stepwise changes fromtheprevious assessment
model to the current diagnostic case.
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Figure 21: Observed (black) vs. predicted (blue) CPUE on the log-scale for the by-catch longline
fleet under the diagnostic case, with the 95% confidence interval assumed for each year in grey.

Figure 22: Observed vs. predicted catch-at-length for each fleet aggregated over all years for the
diagnostic case.
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Figure 23: Temporal trend in the observed (blue points) vs. predicted (red line) catch-at-length
for each fleet for the diagnostic case. The grey bands cover the 95% confidence interval for the
observations.
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Figure 24: Relative change in log-likelihood for different values ofLN(R0). The top panel shows the
total likelihoodandcontributionbyeachcomponent. Thebottompanels show individual components
byfleet for theCPUEandcatch-at-lengthdata. Thedotted lineshowsthevalue forLN(R0)estimated
under the diagnostic case.
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Figure 25: Estimated relationship between recruitment and spawner biomass for the diagnostic case
model.
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Figure 26: Total biomass, recruitment and spawning biomass for the diagnostic case and the
alternative growth and fecundity profile predicted over 1995-2016.
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Figure 27: Fishing mortality by fleet estimated for the reference case over the time-span of the
assessment.

Figure28: Yield as a functionof fishingmortality for thediagnostic caseand thealternative growthand
fecundity scenario. The horizontal and vertical dotted lines indicate Maximum Sustainable Yield and
FMSY , respectively. The location of the three types of F-based reference points presented in this
assessment is indicatedwith the dots.
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Figure 29: Impact of one-off sensitivities from the diagnostic case on spawning biomass depletion
trajectories, by parameter category.
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Figure 30: Median prediction of depletion in spawning biomass over all (unweighted) grid runs, with
0.025th-0.975th, 0.10th-0.90th and 0.25th-0.75th quantile intervals. The horizontal grey lines are
placed at intervals of 5% in the lower part of the graph to aid visualization.
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Figure 31: Prediction of depletion in spawning biomass for each structural uncertainty grid run, with
eachpanel for each grid axis highlighting the different levels within. The horizontal grey lines are placed
at intervals of 5% in the lower part of the graph to aid visualization.
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Figure 32: Median and inter-quartile bounds for depletion in spawning biomass for each structural
uncertainty axis, colour-code by the level used for each axis. The horizontal grey lines are placed at
intervals of 5% in the lower part of the graph to aid visualization.
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Figure 33: Median (white bar) and inter-quartile bounds (box) for SB/SB0 in the final year of the
assessment for each structural uncertainty axis. Thewhiskers extend to 1.5× the interquartile range.
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Figure 34: Median (white bar) and inter-quartile bounds (box) for F/FMSY in the final year of the
assessment for each structural uncertainty axis. Thewhiskers extend to 1.5× the interquartile range.
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Figure 35: Median (white bar) and inter-quartile bounds (box) for F/Flim in the final year of the
assessment for each structural uncertainty axis. Thewhiskers extend to 1.5× the interquartile range.
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Figure 36: Median (white bar) and inter-quartile bounds (box) for F/Fcrash in the final year of the
assessment for each structural uncertainty axis. Thewhiskers extend to 1.5× the interquartile range.
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Figure 37: Kobe plots summarising status in the final year for each of the models in the structural
uncertainty grid, based onSB/SBMSY andF/FMSY . The stock is considered to be overfishedwhen
SB/SBMSY > 1 and undergoing overfishingwhenF/FMSY > 1.
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Figure38: Panel plot summarising stock status in the final year for eachof themodels in the structural
uncertainty grid forSB/SB0 andF/FMSY . Thestock is considered tobeundergoingoverfishingwhen
F/FMSY > 1 (beige zone). The SB/SB0 axis was scaled to span the range of depletion values.
Guidelineswere added inwhite at 0.5SB/SB0 and0.1SB/SB0.
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Figure39: Panel plot summarising stock status in the final year for eachof themodels in the structural
uncertainty grid for SB/SB0 and F/Flim,AS. When F/Flim,AS > 1 (orange zone), the spawning
biomass has declined below 0.5SBMSY . TheSB/SB0 axis was scaled to span the range of depletion
values. Guidelineswere added inwhite at 0.5SB/SB0 and0.1SB/SB0.
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Figure40: Panel plot summarising stock status in the final year for eachof themodels in the structural
uncertainty grid for SB/SB0 and F/Fcrash,AS. The population is expected to become extinct when
levels of F in excess of Fcrash,AS (i.e. F/Fcrash,AS > 1; pink zone) are maintained on the long-term.
TheSB/SB0 axis was scaled to span the range of depletion values. Guidelines were added in white at
0.5SB/SB0 and0.1SB/SB0.
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APPENDIXA: Retrospective analyses

Retrospective analyses allow to assess model bias by rerunning a key model (here, the
diagnostic case) and consecutively removing successive years of data (Cadrin & Vaughan
1997, Cadigan & Farrell 2005). A series of five additional models were thus fiĴed starting
with the full data-set (i.e. the diagnostic case through 2016), followed by models with the
retrospective removal of all input data from the years 2016 to 2012, sequentially. A comparison
of the depletion, spawning potential and recruitment trajectories are shown in Figure A-41.
There is a small temporal bias in the presented stock metrics that results from the removal
of successive years. This could be due to the fact that there was a high period of catches up
to 2012 and a sudden drop thereaĞer. The sustained period of high catches could inform the
model that the stock is more productive for the models spanning longer time periods up to
2016. The difference in estimated SB/SB0 was the greatest for the model stopping in 2011
(-0.03 compared to 2016), and the smallest for the model stopping in 2015 (-0.004).
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Figure A-41: Estimated depletion (SB/SB0), spawning potential and recruitment for each of the
retrospective models sequentially removing one year of the data for the tail end of the time-series.
Model labels refer to the final year of data included in the retrospective run.
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APPENDIXB: Referencepoints and likelihood values for the one-off sensitivity analyses

Table B-13: Likelihood components for the diagnostic casemodel and the one-offmodels exploring
sensitivity to biological factors.

Diagno SekiGrwt RecrSD.2 LowStpn HighStpn LowM HighM

Recruitment -53.72 -53.50 -34.61 -53.78 -53.63 -54.09 -53.50
Survey 5.21 7.63 -1.08 6.11 4.21 4.85 6.57
Length comps 53.14 68.54 53.27 53.63 53.43 63.65 55.11
Catch 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 4.63 22.66 17.58 5.95 4.01 14.41 8.19

Table B-14: Likelihood components for the diagnostic casemodel and the one-offmodels exploring
sensitivity toweights on input data.

Diagno CV.1 CV.2 CV.GLM RecrLmb5 RecrLmb25 RecrLmb25.CV1

Recruitment -53.72 -48.67 -54.70 -54.49 -25.00 -25.00 -0.33
Survey 5.21 47.33 -8.31 -7.07 2.60 2.60 25.45
Length comps 53.14 53.36 53.08 52.92 53.13 53.13 54.31
Catch 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 4.63 52.02 -9.93 -8.63 30.73 30.73 79.42

Table B-15: Likelihood components for the diagnostic casemodel and the one-offmodels exploring
sensitivity to impact of fishing.

Diagno CatchMedian CatchHigh CatchHighDM LowInitF HighInitF

Recruitment -53.72 -53.17 -53.12 -53.77 -53.75 -53.67
Survey 5.21 15.24 16.02 4.22 5.31 5.15
Length comps 53.14 53.00 52.82 52.89 53.74 52.93
Catch 0.00 0.00 0.00 0.00 0.00 0.00
Total 4.63 15.06 15.72 3.33 5.30 4.41

Table B-16: Likelihood components for the diagnostic casemodel and the one-offmodels exploring
sensitivity to fleet selectivities.

Diagno Estim.Selex All.Dome Asymp.PS

Recruitment -53.72 -52.67 -52.94 -53.75
Survey 5.21 1.31 2.97 4.99
Length comps 53.14 51.34 52.98 52.40
Catch 0.00 0.00 0.00 0.00
Total 4.63 -0.01 3.02 3.64
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